Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
∫\(\frac{1}{x-x^{3}}\) dx
Answer:
Let \(\frac{1}{x-x^{3}}=\frac{1}{x\left(1-x^{2}\right)}=\frac{1}{x(1+x)(1-x)}\)
= \(\frac{A}{x}+\frac{B}{1+x}+\frac{C}{1-x}\)
⇒ 1 = A(1 + x)(1 - x) + Bx(1 - x) + Cx(1 + x) ...... (1)
Putting x = 0 in (1), we get
1 = A(1 + 0) (1 - 0) ⇒ A = 1
Putting x = - 1 in (1), we get
1 = B(- 1) (1 + 1) ⇒ B = - \(\frac{1}{2}\)
Putting x = 1 in (1), we get
1 = C(1) (1 + 1) ⇒ C = \(\frac{1}{2}\)
Question 2.
\(\frac{1}{\sqrt{x+a}+\sqrt{x+b}}\)
Answer:
Question 3.
\(\frac{1}{x \sqrt{a x-x^{2}}}\)
Answer:
Question 4.
\(\frac{1}{x^{2}\left(x^{4}+1\right)^{3 / 4}}\)
Answer:
Question 5.
\(\frac{1}{x^{1 / 2}+x^{1 / 3}}\)
Answer:
Question 6.
\(\frac{5 x}{(x+1)\left(x^{2}+9\right)}\)
Answer:
Let I = ∫\(\frac{5 x}{(x+1)\left(x^{2}+9\right)}\) ....... (1)
Now \(\frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)}\)
5x = A(x2 + 9 + (x + 1) (Bx + C)
or 5x = Ax2 + 9A + Bx2 + Bx + Cx + C
or 5x = (A + B)x2 + (B + C)x + 9A + C
Equating the coefficients of x, x2 and constant term on both sides, we get
A + B = 0, B + C = 5, 9A + C = 0
Now, solving these equations, we get
Question 7.
\(\frac{\sin x}{\sin (x-a)}\)
Answer:
Let I = ∫\(\frac{\sin x}{\sin (x-a)}\) dx
Putting x - a = t
⇒ dx = dt
and x = t + a
= cos a ∫1 dt + sin a ∫cot t dt
= t cos a + sin a log |sin t| + C1
= (x - a) cos a + sin a log |sin (x - a)| + C1
= sin a log |sin (x - a)| + x cos a - a cos a + C1
∴ I = sin a log |sin (x - a)| + x cos a + C
(∵ C = C1 - a cos a)
Question 8.
\(\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2} \log x}\)
Answer:
Question 9.
\(\frac{\cos x}{\sqrt{4-\sin ^{2} x}}\)
Answer:
Let I = ∫ \(\frac{\cos x}{\sqrt{4-\sin ^{2} x}}\) dx
Putting sin x = t
⇒ cos x dx = dt
∴ I = ∫ \(\frac{d t}{\sqrt{4-t^{2}}}\) = sin-1 \(\frac{t}{2}\) + C
∴ I = sin-1 \(\left(\frac{\sin x}{2}\right)\) + C
Question 10.
\(\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}\)
Answer:
Question 11.
\(\frac{1}{\cos (x+a) \cos (x+b)}\)
Answer:
Question 12.
\(\frac{x^{3}}{\sqrt{1-x^{8}}}\)
Answer:
Let I = ∫\(\frac{x^{3}}{\sqrt{1-\left(x^{4}\right)^{2}}}\) dx
Putting x4 = t
⇒ 4x3 dx = dt
or x3.dx = \(\frac{1}{4}\)dt
∴ I = \(\frac{1}{4} \int \frac{d t}{\sqrt{1-t^{2}}}=\frac{1}{4}\) sin-1 t + C
= \(\frac{1}{4}\) sin-1 (x4) + C
Question 13.
\(\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}\)
Answer:
Let I = \(\frac{e^{x} d x}{\left(1+e^{x}\right)\left(2+e^{x}\right)}\)
Putting ex = t
⇒ ex dx = dt
∴ I = ∫\(\frac{d t}{(1+t)(2+t)}\)
Now \(\frac{1}{(1+t)(2+t)}=\frac{A}{1+t}+\frac{B}{(2+t)}\)
1 = A(2 + t) + B(1 + t)
= 2A + At + B + Bt
= (A + B)t + 2A + B
Now, equating the coefficients of t and constant term on both sides, we get
A + B = 0 and 2A + B = 1
Solving equations, we get
A = 1, B = - 1
∴ \(\frac{1}{(1+t)(2+t)}=\frac{1}{(1+t)}-\frac{1}{(2+t)}\)
∴ I = ∫\(\frac{d t}{1+t}\) - ∫\(\frac{d t}{2+t}\)
= log |1 + t| - log |2 + t| + C
= log |1 + ex| - log |2 + ex| + C
= log \(\left|\frac{1+e^{x}}{2+e^{x}}\right|\) + C
Question 14.
\(\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}\)
Answer:
Let I = ∫\(\frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}\)
Putting x2 = y
\(\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} = \frac{1}{(y+1)(y+4)}\)
= \(\frac{A}{(y+1)}+\frac{B}{(y+4)}\)
or 1 = A(y + 4) + B(y + 1)
Putting y = - 1
1 = A(- 1 + 4) + B(- 1 + 1)
or 1 = A(3) + B × 0
∴ A = \(\frac{1}{3}\)
Putting y = - 4
1 = A(- 4 + 4) + B(- 4 + 1)
or 1 = A × 0 + B(- 3)
∴ B = - \(\frac{1}{3}\)
Question 15.
cos3 x elog sin x
Answer:
Let I = ∫cos3 x elog sin x
or I = ∫ cos3 x sin x dx(∵ elog x = x)
Putting cos x = t
⇒ - sin x dx = dt
∴ I = - ∫ t3 dt
= - \(\frac{t^{4}}{4}\) + C
= - \(\frac{(\cos x)^{4}}{4}\) + C = \(\frac{\cos ^{4} x}{4}\) + C
∴ I = - \(\frac{1}{4}\) cos4 x + C
Question 16.
e3 log x (x4 + 1)-1
Answer:
Let I = ∫e3 log x (x4 + 1)-1 dx
= ∫elog x3 \(\left(\frac{1}{x^{4}+1}\right)\) dx
or I = ∫\(\frac{x^{3}}{x^{4}+1}\) dx (∵ elog x = x)
Putting x4 + 1 = t
⇒ 4x3 dx = dt
∴ x3 dx = \(\frac{1}{4}\) dt
or I = \(\frac{1}{4} \int \frac{d t}{t}=\frac{1}{4}\) log|t| + C
= \(\frac{1}{4}\) log |x4 + 1| + C
Question 17.
f'(ax + b) [f(ax + b)]n
Answer:
Let I = ∫f'(ax + b) [f(ax + b)]n dx
putting f(ax + b) = t
⇒ f'(ax + b) dx = \(\frac{1}{4}\) dt
Question 18.
\(\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}\)
Answer:
Let I = ∫\(\frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}\)
Now, sin3 x sin (x + α)
= sin3 x (sin x cos α + cos x sin α)
= sin4 x cos α + sin3 x cos x sin α
= sin4 x (cos α + cot x sin α)
Question 19.
\(\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}\), {x ∈ [0, 1]}
Answer:
Now, I1 = ∫sin-1 √x dx
Let √x = t
∴ x = t2
Then dx = 2t dt
∴ I1 = 2 ∫sin-1 (t).dt
= 2∫t sin-1 (t)
Question 20.
\(\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\)
Answer:
Let I = ∫\(\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\) dx
Putting √x = cos t
⇒ \(\frac{1}{2 \sqrt{x}}\) dx = - sin t dt
⇒ dx = - 2√x sin t dt
= - 2 cos t sin t dt
= - 2 cos t sin t dt
= - sin 2t dt
Question 21.
\(\frac{2+\sin 2 x}{1+\cos 2 x}\) ex
Answer:
Let
= ∫ (sec2 x + tan x) dx = dt
Now, let ex tan x = t
Then (ex sec2 x + ex tan x) dx = dt
∴ ex (sec2 x + tan x)dx = dt
∴ I = ∫ dt = t + C
∴ I = ex tan x + C
Question 22.
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\)
Answer:
Let I = ∫ \(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) dx
Now,
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\)
or x2 + x + 1 = A(x + 1) (x + 2) + B(- 1 + 2) + C(x + 1)2
Putting x = - 1
(- 1)2 - 1 + 1 = A(- 1 + 1) (- 1 + 2) + B(- 1 + 2) + C(- 1 + 1)2
⇒ 1 = B × 1= B
∴ B = 1
Putting x = - 2
(- 2)2 - 2 + 1 = A(- 2 + 1) (- 2 + 2) + B(- 2 + 2) + C(- 2 + 1)2
or 4 - 2 + 1 = 0 + 0 + C(- 1)2
or 4 - 2 + 1 = C
or 3 = C
∴ C = 3
Now, equating the coefficients of x2 on both sides,
we get
1 = A + C
or 1 = A + 3
or A = 1 - 3 = - 2
Question 23.
tan-1 \(\sqrt{\frac{1-x}{1+x}}\)
Answer:
Let I = ∫ tan-1 \(\sqrt{\frac{1-x}{1+x}}\) dx
Putting x = cos θ
⇒ dx = - sin θ dθ
Question 24.
\(\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}\)
Answer:
Question 25.
\(\int_{\pi / 2}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)\) dx
Answer:
Question 26.
\(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x}\) dx
Dividing numerator and denominator by cos4 x,
we get
Putting tan2 x = t
⇒ 2 tan x sec2 x dx = dt
when x = 0, then t = 0
when x = \(\frac{\pi}{4}\), then t = tan2 \(\frac{\pi}{4}\) = 1
Question 27.
\(\int_{0}^{\pi / 2} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x}\) dx
Answer:
Question 28.
\(\int_{\pi / 6}^{\pi / 3} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}}\) dx
Answer:
Question 29.
\(\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}\)
Answer:
Question 30.
\(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x}\) dx
Putting sin x - cos x = t
⇒ (cos x + sin x)dx = dt
and (sin x - cos x)2 = t2
or sin2 x + cos2 x - 2 sin x cos x = t2
or 1 - 2 sin x.cos x
or 1 - sin 2x = t2
or sin 2x = 1 - t2
When x = 0, then sin 0 - cos 0 = t
or - 1 = t or t = - 1
Question 31.
\(\int_{0}^{\pi / 2}\) sin 2x tan-1 (sin x) dx
Answer:
Let I = \(\int_{0}^{\pi / 2}\) sin 2x tan-1 (sin x) dx
= \(\int_{0}^{\pi / 2}\) (2 sin x cos x) tan-1 (sin x) dx
= 2 \(\int_{0}^{\pi / 2}\) sin x cos x tan-1 (sin x) dx
Putting sin x = t
⇒ cos x dx = dt
When x = 0, then t = 0
When x = \(\frac{\pi}{2}\), then t = 1
Question 32.
\(\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x}\) dx
Answer:
Question 33.
\(\int_{1}^{4}\) [|x - 1| + |x - 2| + |x - 3|] dx
Answer:
Let
Question 34.
\(\int_{1}^{3} \frac{d x}{x^{2}(x+1)}\) = \(\frac{2}{3}\) + log \(\frac{2}{3}\)
Answer:
Let I = \(\frac{1}{x^{2}(x+1)}\)
Now, \(\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(x+1)}\) (Let)
or 1 = A(x + 1)x + B(x + 1) + Cx2
or 1 = A(x2 + x) + Bx + B + Cx2
1 = (A + C)x2 + (A + B)x + B
Equating the coefficients of x, x2 and constant terms on both sides, we get
A + C = 0, A + B = 0, B = 1
Now, solving these equations, we get
A = - 1, C = 1, B = 1
Question 35.
\(\int_{0}^{1}\) xex dx = 1
Answer:
Now, \(\int_{0}^{1}\) xex = x∫ex dx - ∫{\(\frac{d}{d x}\) (x) ∫ex dx} dx
or ∫xex dx = x ex - ∫1.ex dx = x ex - ex
∴ I = \(\int_{0}^{1}\) xex dx = \(\left[x e^{x}-e^{x}\right]_{0}^{1}\)
= 1 (1e1 - e1) - [0e0 - e0]
= (e - e) - (- 1)
= 1 = R.H.S.
∴ \(\int_{0}^{1}\) xex dx = 1
Question 36.
\(\int_{-1}^{1}\) x17 cos4 x dx = 0
Answer:
\(\int_{-1}^{1}\) x17 cos4 x dx = 0
If f(- x) dx = 0, when f is an odd function.
f(- x) = (- x)17 cos4 (- x)
= - x17 cos4 x = - f(x)
∴ x17 cos4 x is an odd function.
∴ \(\int_{-1}^{1}\) x17 cos4 x = 0
Hence Proved.
Question 37.
\(\int_{-1}^{1}\) sin3 dx = \(\frac{2}{3}\)
Answer:
Let I = \(\int_{0}^{\pi / 2}\) sin3 x dx
= \(\int_{0}^{\pi / 2}\) sin2 x.sin x dx
= \(\int_{0}^{\pi / 2}\) (1 - cos2 x)sin x dx
Putting cos x = t
⇒ - sin x dx = dt or sin x dx = - dt
When x = 0, then t = cos 0 = 1
When x = \(\frac{\pi}{2}\), then t = cos \(\frac{\pi}{2}\) = 0
Question 38.
\(\int_{0}^{\pi / 4} \)2 tan3 x dx = 1 - log 2
Answer:
Putting tan x = t
⇒ sec2 x dx = dt
When x = 0, then t = 0
When x = \(\frac{\pi}{4}\), then t = tan \(\frac{\pi}{4}\) = 1
Question 39.
\(\int_{0}^{1}\) sin-1 x dx = \(\frac{\pi}{2}\) - 1
Answer:
Let I = \(\int_{0}^{1}\) sin-1 x dx
Putting sin-1 x = t
⇒ x = sin t ∴ dx = cos t dt
When x = 0, then t = 0
When x = 1, then t = sin-1 1 = \(\frac{\pi}{2}\)
∴ I = \(\int_{0}^{\pi / 2}\) t.cost dt ..... (1)
Now,
∫t cos t dt = t∫cos t dt - ∫{\(\frac{d}{d t}\) t∫cos t dt} dt
= t (sin t) - ∫1.sin t dt
= t sin t - (- cos t)
= t sin t + cos t
∴ I = \([t \sin t+\cos t]_{0}^{\pi / 2}\)
= [\(\frac{\pi}{2}\) sin \(\frac{\pi}{2}\) + cos \(\frac{\pi}{2}\) - 0 × sin 0 - cos 0]
= \(\frac{\pi}{2}\) × 1 + 0 - 0 - 1
Thus, I = \(\frac{\pi}{2}\) - 1
Hence Proved.
Question 40.
Evaluate \(\int_{0}^{1}\) e2 - 3x dx as a limit of a sum.
Answer:
Let I = \(\int_{0}^{1}\) e2 - 3x dx
Here a = 0, b = 1, f(x) = e2 - 3x, nh = (1 - 0) = 1
Question 41.
∫\(\frac{d x}{e^{x}+e^{x}}\) is equal to:
(A) tan-1 (ex) + C
(B) tan-1 (e-1) + C
(C) log (ex - e-x + C
(D) log (ex + e-x) + C
Answer:
I = tan-1 (ex) + C
Hence, (A) is the correct answer.
Question 42.
∫\(\frac{\cos 2 x}{(\sin x+\cos x)^{2}}\) dx is equal to:
(A) \(\frac{-1}{\sin x+\cos x}\) + C
(B) log |sin x + cos x| + C
(C) log |sin x - cos x| + C
(D) \(\frac{1}{(\sin x+\cos x)^{2}}\) + C
Answer:
Putting sin x + cos x = t
⇒ (cos x - sin x) dx = dt
∴ I = ∫\(\frac{d t}{t}\) = log |t| + C
or I = log |sin x + cos x| + C
Hence, (B) is the correct answer.
Question 43.
If f(a + b - x) = f(x), then \(\int_{a}^{b}\) xf(x) dx is equal to:
(A) \(\frac{a+b}{2} \int_{a}^{b} f(b-x) d x\)
(B)\( \frac{a+b}{2} \int_{a}^{b} f(b+x)\) d x
(C) \(\left(\frac{b-a}{2}\right) \int_{a}^{b}\) f(x) d x
(D) \(\left(\frac{a+b}{2}\right) \int_{a}^{b}\) f(x) d x
Answer:
Hence, (D) is the correct answer.
Question 44.
The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1-x-x^{2}}\right)\) dx is:
(A) 1
(B ) 0
(C) - 1
(D) \(\frac{\pi}{4}\)
Answer:
Hence, (B) is the correct answer.