RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Miscellaneous Exercise

Question 1.
\(\frac{1}{x-x^{3}}\) dx
Answer:
Let \(\frac{1}{x-x^{3}}=\frac{1}{x\left(1-x^{2}\right)}=\frac{1}{x(1+x)(1-x)}\)
= \(\frac{A}{x}+\frac{B}{1+x}+\frac{C}{1-x}\)
⇒ 1 = A(1 + x)(1 - x) + Bx(1 - x) + Cx(1 + x) ...... (1)
Putting x = 0 in (1), we get
1 = A(1 + 0) (1 - 0) ⇒ A = 1
Putting x = - 1 in (1), we get
1 = B(- 1) (1 + 1) ⇒ B = - \(\frac{1}{2}\)
Putting x = 1 in (1), we get
1 = C(1) (1 + 1) ⇒ C = \(\frac{1}{2}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 2.
\(\frac{1}{\sqrt{x+a}+\sqrt{x+b}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 2

Question 3.
\(\frac{1}{x \sqrt{a x-x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 3

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 4.
\(\frac{1}{x^{2}\left(x^{4}+1\right)^{3 / 4}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 4
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 5

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 5.
\(\frac{1}{x^{1 / 2}+x^{1 / 3}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 6

Question 6.
\(\frac{5 x}{(x+1)\left(x^{2}+9\right)}\)
Answer:
Let I = ∫\(\frac{5 x}{(x+1)\left(x^{2}+9\right)}\) ....... (1)
Now \(\frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)}\)
5x = A(x2 + 9 + (x + 1) (Bx + C)
or 5x = Ax2 + 9A + Bx2 + Bx + Cx + C
or 5x = (A + B)x2 + (B + C)x + 9A + C
Equating the coefficients of x, x2 and constant term on both sides, we get
A + B = 0, B + C = 5, 9A + C = 0
Now, solving these equations, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 7

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 7.
\(\frac{\sin x}{\sin (x-a)}\)
Answer:
Let I = ∫\(\frac{\sin x}{\sin (x-a)}\) dx
Putting x - a = t
⇒ dx = dt
and x = t + a
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 8
= cos a ∫1 dt + sin a ∫cot t dt
= t cos a + sin a log |sin t| + C1
= (x - a) cos a + sin a log |sin (x - a)| + C1
= sin a log |sin (x - a)| + x cos a - a cos a + C1
∴ I = sin a log |sin (x - a)| + x cos a + C
(∵ C = C1 - a cos a)

Question 8.
\(\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2} \log x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 9

Question 9.
\(\frac{\cos x}{\sqrt{4-\sin ^{2} x}}\)
Answer:
Let I = ∫ \(\frac{\cos x}{\sqrt{4-\sin ^{2} x}}\) dx
Putting sin x = t
⇒ cos x dx = dt
∴ I = ∫ \(\frac{d t}{\sqrt{4-t^{2}}}\) = sin-1 \(\frac{t}{2}\) + C
∴ I = sin-1 \(\left(\frac{\sin x}{2}\right)\) + C

Question 10.
\(\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 10

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 11.
\(\frac{1}{\cos (x+a) \cos (x+b)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 11

Question 12.
\(\frac{x^{3}}{\sqrt{1-x^{8}}}\)
Answer:
Let I = ∫\(\frac{x^{3}}{\sqrt{1-\left(x^{4}\right)^{2}}}\) dx
Putting x4 = t
⇒ 4x3 dx = dt
or x3.dx = \(\frac{1}{4}\)dt
∴ I = \(\frac{1}{4} \int \frac{d t}{\sqrt{1-t^{2}}}=\frac{1}{4}\) sin-1 t + C
= \(\frac{1}{4}\) sin-1 (x4) + C

Question 13.
\(\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}\)
Answer:
Let I = \(\frac{e^{x} d x}{\left(1+e^{x}\right)\left(2+e^{x}\right)}\)
Putting ex = t
⇒ ex dx = dt
∴ I = ∫\(\frac{d t}{(1+t)(2+t)}\)
Now \(\frac{1}{(1+t)(2+t)}=\frac{A}{1+t}+\frac{B}{(2+t)}\)
1 = A(2 + t) + B(1 + t)
= 2A + At + B + Bt
= (A + B)t + 2A + B
Now, equating the coefficients of t and constant term on both sides, we get
A + B = 0 and 2A + B = 1
Solving equations, we get
A = 1, B = - 1
\(\frac{1}{(1+t)(2+t)}=\frac{1}{(1+t)}-\frac{1}{(2+t)}\)
∴ I = ∫\(\frac{d t}{1+t}\) - ∫\(\frac{d t}{2+t}\)
= log |1 + t| - log |2 + t| + C
= log |1 + ex| - log |2 + ex| + C
= log \(\left|\frac{1+e^{x}}{2+e^{x}}\right|\) + C

Question 14.
\(\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}\)
Answer:
Let I = ∫\(\frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}\)
Putting x2 = y
\(\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} = \frac{1}{(y+1)(y+4)}\)
= \(\frac{A}{(y+1)}+\frac{B}{(y+4)}\)
or 1 = A(y + 4) + B(y + 1)
Putting y = - 1
1 = A(- 1 + 4) + B(- 1 + 1)
or 1 = A(3) + B × 0
∴ A = \(\frac{1}{3}\)
Putting y = - 4
1 = A(- 4 + 4) + B(- 4 + 1)
or 1 = A × 0 + B(- 3)
∴ B = - \(\frac{1}{3}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 12

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 15.
cos3 x elog sin x
Answer:
Let I = ∫cos3 x elog sin x
or I = ∫ cos3 x sin x dx(∵ elog x = x)
Putting cos x = t
⇒ - sin x dx = dt
∴ I = - ∫ t3 dt
= - \(\frac{t^{4}}{4}\) + C
= - \(\frac{(\cos x)^{4}}{4}\) + C = \(\frac{\cos ^{4} x}{4}\) + C
∴ I = - \(\frac{1}{4}\) cos4 x + C

Question 16.
e3 log x (x4 + 1)-1
Answer:
Let I = ∫e3 log x (x4 + 1)-1 dx
= ∫elog x3 \(\left(\frac{1}{x^{4}+1}\right)\) dx
or I = ∫\(\frac{x^{3}}{x^{4}+1}\) dx (∵ elog x = x)
Putting x4 + 1 = t
⇒ 4x3 dx = dt
∴ x3 dx = \(\frac{1}{4}\) dt
or I = \(\frac{1}{4} \int \frac{d t}{t}=\frac{1}{4}\) log|t| + C
= \(\frac{1}{4}\) log |x4 + 1| + C

Question 17.
f'(ax + b) [f(ax + b)]n
Answer:
Let I = ∫f'(ax + b) [f(ax + b)]n dx
putting f(ax + b) = t
⇒ f'(ax + b) dx = \(\frac{1}{4}\) dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 13

Question 18.
\(\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}\)
Answer:
Let I = ∫\(\frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}\)
Now, sin3 x sin (x + α)
= sin3 x (sin x cos α + cos x sin α)
= sin4 x cos α + sin3 x cos x sin α
= sin4 x (cos α + cot x sin α)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 14

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 19.
\(\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}\), {x ∈ [0, 1]}
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 15
Now, I1 = ∫sin-1 √x dx
Let √x = t
∴ x = t2
Then dx = 2t dt
∴ I1 = 2 ∫sin-1 (t).dt
= 2∫t sin-1 (t)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 16

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 20.
\(\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\)
Answer:
Let I = ∫\(\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\) dx
Putting √x = cos t
\(\frac{1}{2 \sqrt{x}}\) dx = - sin t dt
⇒ dx = - 2√x sin t dt
= - 2 cos t sin t dt
= - 2 cos t sin t dt
= - sin 2t dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 17

Question 21.
\(\frac{2+\sin 2 x}{1+\cos 2 x}\) ex
Answer:
Let
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 18
= ∫ (sec2 x + tan x) dx = dt
Now, let ex tan x = t
Then (ex sec2 x + ex tan x) dx = dt
∴ ex (sec2 x + tan x)dx = dt
∴ I = ∫ dt = t + C
∴ I = ex tan x + C

Question 22.
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\)
Answer:
Let I = ∫ \(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) dx
Now,
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\)
or x2 + x + 1 = A(x + 1) (x + 2) + B(- 1 + 2) + C(x + 1)2
Putting x = - 1
(- 1)2 - 1 + 1 = A(- 1 + 1) (- 1 + 2) + B(- 1 + 2) + C(- 1 + 1)2
⇒ 1 = B × 1= B
∴ B = 1
Putting x = - 2
(- 2)2 - 2 + 1 = A(- 2 + 1) (- 2 + 2) + B(- 2 + 2) + C(- 2 + 1)2
or 4 - 2 + 1 = 0 + 0 + C(- 1)2
or 4 - 2 + 1 = C
or 3 = C
∴ C = 3
Now, equating the coefficients of x2 on both sides,
we get
1 = A + C
or 1 = A + 3
or A = 1 - 3 = - 2
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 19

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 23.
tan-1 \(\sqrt{\frac{1-x}{1+x}}\)
Answer:
Let I = ∫ tan-1 \(\sqrt{\frac{1-x}{1+x}}\) dx
Putting x = cos θ
⇒ dx = - sin θ dθ
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 20

Question 24.
\(\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 21
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 22

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 25.
\(\int_{\pi / 2}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 23

Question 26.
\(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x}\) dx
Dividing numerator and denominator by cos4 x,
we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 24
Putting tan2 x = t
⇒ 2 tan x sec2 x dx = dt
when x = 0, then t = 0
when x = \(\frac{\pi}{4}\), then t = tan2 \(\frac{\pi}{4}\) = 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 25

Question 27.
\(\int_{0}^{\pi / 2} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 26
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 27

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 28.
\(\int_{\pi / 6}^{\pi / 3} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 28

Question 29.
\(\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 29

Question 30.
\(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x}\) dx
Putting sin x - cos x = t
⇒ (cos x + sin x)dx = dt
and (sin x - cos x)2 = t2
or sin2 x + cos2 x - 2 sin x cos x = t2
or 1 - 2 sin x.cos x
or 1 - sin 2x = t2
or sin 2x = 1 - t2
When x = 0, then sin 0 - cos 0 = t
or - 1 = t or t = - 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 30

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 31.
\(\int_{0}^{\pi / 2}\) sin 2x tan-1 (sin x) dx
Answer:
Let I = \(\int_{0}^{\pi / 2}\) sin 2x tan-1 (sin x) dx
= \(\int_{0}^{\pi / 2}\) (2 sin x cos x) tan-1 (sin x) dx
= 2 \(\int_{0}^{\pi / 2}\) sin x cos x tan-1 (sin x) dx
Putting sin x = t
⇒ cos x dx = dt
When x = 0, then t = 0
When x = \(\frac{\pi}{2}\), then t = 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 31

Question 32.
\(\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 32

Question 33.
\(\int_{1}^{4}\) [|x - 1| + |x - 2| + |x - 3|] dx
Answer:
Let
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 33
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 34

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 34.
\(\int_{1}^{3} \frac{d x}{x^{2}(x+1)}\) = \(\frac{2}{3}\) + log \(\frac{2}{3}\)
Answer:
Let I = \(\frac{1}{x^{2}(x+1)}\)
Now, \(\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(x+1)}\) (Let)
or 1 = A(x + 1)x + B(x + 1) + Cx2
or 1 = A(x2 + x) + Bx + B + Cx2
1 = (A + C)x2 + (A + B)x + B
Equating the coefficients of x, x2 and constant terms on both sides, we get
A + C = 0, A + B = 0, B = 1
Now, solving these equations, we get
A = - 1, C = 1, B = 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 35

Question 35.
\(\int_{0}^{1}\) xex dx = 1
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 36
Now, \(\int_{0}^{1}\) xex = x∫ex dx - ∫{\(\frac{d}{d x}\) (x) ∫ex dx} dx
or ∫xex dx = x ex - ∫1.ex dx = x ex - ex
∴ I = \(\int_{0}^{1}\) xex dx = \(\left[x e^{x}-e^{x}\right]_{0}^{1}\)
= 1 (1e1 - e1) - [0e0 - e0]
= (e - e) - (- 1)
= 1 = R.H.S.
\(\int_{0}^{1}\) xex dx = 1

Question 36.
\(\int_{-1}^{1}\) x17 cos4 x dx = 0
Answer:
\(\int_{-1}^{1}\) x17 cos4 x dx = 0
If f(- x) dx = 0, when f is an odd function.
f(- x) = (- x)17 cos4 (- x)
= - x17 cos4 x = - f(x)
∴ x17 cos4 x is an odd function.
\(\int_{-1}^{1}\) x17 cos4 x = 0
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 37.
\(\int_{-1}^{1}\) sin3 dx = \(\frac{2}{3}\)
Answer:
Let I = \(\int_{0}^{\pi / 2}\) sin3 x dx
= \(\int_{0}^{\pi / 2}\) sin2 x.sin x dx
= \(\int_{0}^{\pi / 2}\) (1 - cos2 x)sin x dx
Putting cos x = t
⇒ - sin x dx = dt or sin x dx = - dt
When x = 0, then t = cos 0 = 1
When x = \(\frac{\pi}{2}\), then t = cos \(\frac{\pi}{2}\) = 0
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 37

Question 38.
\(\int_{0}^{\pi / 4} \)2 tan3 x dx = 1 - log 2
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 38
Putting tan x = t
⇒ sec2 x dx = dt
When x = 0, then t = 0
When x = \(\frac{\pi}{4}\), then t = tan \(\frac{\pi}{4}\) = 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 39

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 39.
\(\int_{0}^{1}\) sin-1 x dx = \(\frac{\pi}{2}\) - 1
Answer:
Let I = \(\int_{0}^{1}\) sin-1 x dx
Putting sin-1 x = t
⇒ x = sin t ∴ dx = cos t dt
When x = 0, then t = 0
When x = 1, then t = sin-1 1 = \(\frac{\pi}{2}\)
∴ I = \(\int_{0}^{\pi / 2}\) t.cost dt ..... (1)
Now,
∫t cos t dt = t∫cos t dt - ∫{\(\frac{d}{d t}\) t∫cos t dt} dt
= t (sin t) - ∫1.sin t dt
= t sin t - (- cos t)
= t sin t + cos t
∴ I = \([t \sin t+\cos t]_{0}^{\pi / 2}\)
= [\(\frac{\pi}{2}\) sin \(\frac{\pi}{2}\) + cos \(\frac{\pi}{2}\) - 0 × sin 0 - cos 0]
= \(\frac{\pi}{2}\) × 1 + 0 - 0 - 1
Thus, I = \(\frac{\pi}{2}\) - 1
Hence Proved.

Question 40.
Evaluate \(\int_{0}^{1}\) e2 - 3x dx as a limit of a sum.
Answer:
Let I = \(\int_{0}^{1}\) e2 - 3x dx
Here a = 0, b = 1, f(x) = e2 - 3x, nh = (1 - 0) = 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 40

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 41.
\(\frac{d x}{e^{x}+e^{x}}\) is equal to:
(A) tan-1 (ex) + C
(B) tan-1 (e-1) + C
(C) log (ex - e-x + C
(D) log (ex + e-x) + C
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 41
I = tan-1 (ex) + C
Hence, (A) is the correct answer.

Question 42.
\(\frac{\cos 2 x}{(\sin x+\cos x)^{2}}\) dx is equal to:
(A) \(\frac{-1}{\sin x+\cos x}\) + C
(B) log |sin x + cos x| + C
(C) log |sin x - cos x| + C
(D) \(\frac{1}{(\sin x+\cos x)^{2}}\) + C
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 42
Putting sin x + cos x = t
⇒ (cos x - sin x) dx = dt
∴ I = ∫\(\frac{d t}{t}\) = log |t| + C
or I = log |sin x + cos x| + C
Hence, (B) is the correct answer.

Question 43.
If f(a + b - x) = f(x), then \(\int_{a}^{b}\) xf(x) dx is equal to:
(A) \(\frac{a+b}{2} \int_{a}^{b} f(b-x) d x\)
(B)\( \frac{a+b}{2} \int_{a}^{b} f(b+x)\) d x
(C) \(\left(\frac{b-a}{2}\right) \int_{a}^{b}\) f(x) d x
(D) \(\left(\frac{a+b}{2}\right) \int_{a}^{b}\) f(x) d x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 43
Hence, (D) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 44.
The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1-x-x^{2}}\right)\) dx is:
(A) 1
(B ) 0
(C) - 1
(D) \(\frac{\pi}{4}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise 44
Hence, (B) is the correct answer.

Bhagya
Last Updated on Nov. 3, 2023, 9:37 a.m.
Published Nov. 2, 2023