Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.6 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
x sin x
Answer:
= x( - cos x) - ∫[\(\frac{d}{d x}\) x ∫sin x dx] dx
= x (- cos x) - ∫ [1.(- cos x) dx]
= - x cos x + ∫ cos x dx
= - x cos x + sin x + C
Question 2.
x sin 3x
Answer:
Question 3.
x2 ex
Answer:
= x2 ex - 2[xex - ∫1.ex dx]
= x2ex - 2[xex - ex] + C
= x2ex - 2xex - 2ex + C
= ex (x2 - 2x + 2) + C
Question 4.
x log x
Answer:
Question 5.
x log 2x
Answer:
Question 6.
x2 log x
Answer:
Question 7.
x sin-1 x
Answer:
Question 8.
x tan-1 x
Answer:
Question 9.
x cos-1 x
Answer:
Question 10.
(sin-1 x)2
Answer:
Let I = ∫ (sin-1 x)2 dx
Putting sin-1x = t
⇒ x = sin t
dx = cos t dt
∴ I = ∫ (sin-1 x)2 dx
I = t2 ∫ cos t dt - ∫{\(\frac{d}{d t}\) (t2) ∫ cos t dt } dt
= t2 sin t - ∫ 2t sin t dt
= t2 sin t - 2 ∫ t sin t dt
I = t2 sin t - 2I1 ........ (1)
= t(- cos t) - ∫1.(- cos t) dt
= - t cos t + ∫cos t dt
= - t cos t + sin t + C1
Putting the value of I1 in equation (1), we have
I = t2 sin t - 2(- t cos t + sin t + C1)
= t2 sin t + 2t cos t - 2 sin t - 2C1
= t2 sin t + 2t cos t - 2 sin t + C (∵ C = - 2C1)
= t2 sin t + 2t \(\sqrt{1-\sin ^{2} t}\) - 2 sin t + C
= x(sin-1 x)2 + 2 sin-1 x\(\sqrt{1-x^{2}}\) - 2x + C
Question 11.
\(\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}\)
Answer:
= -[t sin t - ∫1.sin t dt]
= - t sin t + ∫ sin t dt
= - t sin t + (- cos t) + C
= - t sin t - cos t + C
= - t\(\sqrt{1-\cos ^{2} t}\) - cos t + C
= - (cos-1 x)\(\sqrt{1-x^{2}}\) - x + C
Question 12.
x sec2 x
Answer:
= x tan x - ∫1. tan x dx
= x tan x - ∫tan x dx
= x tan x - (- log |cos x|) + C
= x tan x + log |cos x| + C
Question 13.
tan-1 x
Answer:
Question 14.
x (log x)2
Answer:
Question 15.
(x2 + 1) log x
Answer:
Question 16.
ex (sin x + cos x)
Answer:
Let I = ∫ex (sin x + cos x) dx
= ex - ∫ (cos x) ex dx + ∫ex cos x dx + C
= ex - ∫ex cos x dx + ∫ex cos x dx + C
= ex - ∫ex cos x dx + ∫ex cos x dx + C
= ex sin x + C
Alternative: (i) ∫ex (sin x + cos x) dx
Here f(x) = sin x and f’(x) = cos x
∵ ∫ ex [f(x) + f’(x)] = ex f(x) + C
∴ ∫ex (sin x + cos x) dx = ex sin x + C
(ii) Let I = ∫ex (sin x + cos x) dx
Putting ex sin x = t
⇒ (ex cos x + ex sin x)dx = dt
∴ I = ∫1 dt = t + C = ex sin x + C
Question 17.
\(\frac{x e^{x}}{(1+x)^{2}}\)
Answer:
Question 18.
ex \(\left(\frac{1+\sin x}{1+\cos x}\right)\)
Answer:
Question 19.
ex \(\left(\frac{1}{x}-\frac{1}{x^{2}}\right)\)
Answer:
Alternative:
I = ∫ex \(\left(\frac{1}{x}-\frac{1}{x^{2}}\right)\) dx
Here f(x) = \(\frac{1}{x}\) and f'(x) = - \(\frac{1}{x^{2}}\)
From formula
∫ex[f(x) + f'(x)] dx = ex f(x) + C
I = \(\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=e^{x} \frac{1}{x}+C=\frac{e^{x}}{x}+C\)
Question 20.
\(\frac{(x-3) e^{x}}{(x-1)^{3}}\)
Answer:
Alternative:
Question 21.
e2x sin x
Answer:
I = e2x ∫sin x dx - ∫ {\(\frac{d}{d x}\) e2x ∫ sin x dx } dx
= e2x (- cos x) - ∫2e2x (- cos x) dx
= - e2x cos x + 2∫e2x cos x dx
I = - e2x cos x + 2I1 ........ (1)
⇒ I = e2x ∫cos x dx - ∫ {\(\frac{d}{d x}\) e2x ∫ cos x dx } dx
⇒ I = e2x sin x - ∫ 2e2x sin x dx + C1
Putting the value of I1 in equation (1), we get
I = - e2x cos x + 2[e2x sin x - 2 ∫e2x sin x dx + C1]
⇒ I = - e2x cos x + 2e2x sin x - 4 ∫e2x sin x dx + 2C1
⇒ I = - e2x cos x + 2e2x sin x - 4I + 2C1
⇒ I + 4I = - e2x cos x + 2e2x sin x + 2C1
⇒ 5I = - e2x cos x + 2e2x sin x + 2C1
⇒ I = - \(\frac{1}{5}\)e2x cos x + \(\frac{2}{5}\)e2x sin x + \(\frac{2}{5}\)C1
⇒ I = - \(\frac{1}{5}\)e2x cos x + \(\frac{2}{5}\)e2x sin x + C
(where C = \(\frac{2}{5}\)C1)
I = \(\frac{e^{2 x}}{5}\) (2 sin x - cos x) + C
Question 22.
sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\)
Answer:
= 2θ tan θ - 2∫1.tan θ dθ
= 2θ tan θ - 2∫tan θ dθ
= 2θ tan θ - 2(- log | cos θ|) + C
= 2θ tan θ + 2 log |cos θ| + C
Question 23.
∫x2 ex3 dx equals:
(A) \(\frac{1}{3}\)ex3 + C
(B) \(\frac{1}{3}\)ex2 + C
(C) \(\frac{1}{2}\)ex3 + C
(D) \(\frac{1}{2}\)ex2 + C
Answer:
Let I = ∫x2 ex3 dx
Putting x3 = t
∴ I = \(\frac{1}{3}\)∫et dt = \(\frac{1}{3}\)et + C
= \(\frac{1}{3}\)ex3 + C
Hence, (A) is the correct answer.
Question 24.
∫ex sec x (1 + tan x) dx equals:
(A) ex cos x + C
(B) ex sec x + C
(C) ex sin x + C
(D) ex tan x + C
Answer:
I = ∫ex sec x (1 + tan x) dx
= ∫ex (sec x + sec x + tan x) dx
Here, f(x) = sec x and f'(x) = sec x tan x
Then, from formula
∫ex [f(x) + f'(x)]dx = ex f(x) + C
I = ex sec x + C
Hence, (B) is the correct answer.