RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.5

Question 1.
\(\frac{x}{(x+1)(x+2)}\)
Answer:
Let \(\frac{x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}\)
⇒ x = A(x + 2) + B(x + 1)
⇒ x = (A + B)x + 2A + B
Comparing the coefficients of x and constant terms in both sides, we have
A + B = 1, 2A + B = 0
Now, solving these equations, we get
A = - 1 and B = 2
\(\frac{x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}\)
\(\int \frac{x}{(x+1)(x+2)} d x=-\int \frac{d x}{x+1}+\int \frac{2}{x+2}\) d x
= - log |x + 1| + 2 log |x + 2| + C
= - log |x + 1| + log |x + 2|2 + C
= log\(\frac{(x+2)^{2}}{|x+1|}\) + C (∵ (x + 2)2 > 0)

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 2.
\(\frac{1}{x^{2}-9}\)
Answer:
Let \(\frac{1}{x^{2}-9}=\frac{1}{(x-3)(x+3)}\)
= \(\frac{A}{x-3}+\frac{B}{x+3}\)
⇒ 1 = A(x + 3) + B(x - 3)
⇒ 1 = A(A + B)x + 3A - 3B
Comparing the coefficients of x and constant terms in both sides, we have
A + B = 0 and 3A - 3B = 1
Now, solving these equations, we have
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 1

Alternative:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 2

Question 3.
\(\frac{3 x-1}{(x-1)(x-2)(x-3)}\)
Answer:
Let \(\frac{3 x-1}{(x-1)(x-2)(x-3)}\)
= \(\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}\)
⇒ 3x - 1 = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2)
⇒ 3x - 1 = A(x2 - 5x + 6) + B(x2 - 4x + 3) + C(x2 - 3x + 2)
⇒ 3x - 1 = (A + B + C)x2 + (- 5A - 4B - 3C)x + 6A + 3B + 2C
Comparing the coeffcients of x2, x and constant terms in both sides, we have
A + B + C = 0
- 5A - 4B - 3C = 3
and 6A + 3B + 2C = - 1
Now, solving these equations, we get
A = 1, B = -5, C = 4
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 3

Alternative:
(3x - 1) = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2)
Putting x = 1
3 × 1 - 1 = A(1 - 2) (1 - 3)
⇒ 2 = A(- 1)(- 2)
⇒ 2 = 2A
⇒ A = 1
Putting x = 2
3 × 2 - 1 = B(2 - 1) (2 - 3) = B(- 1)
⇒ 6 - 1 = - B
∴ B = - 5
Putting x = 3
3 × 3 - 1 = C(3 - 1)(3 - 2)
⇒ 9 - 1 = C × 2 × 1
⇒ 8 = 2C
∴ C = 4
Values of A, B and C also obtain in this method.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 4.
\(\frac{x}{(x-1)(x-2)(x-3)}\)
Answer:
Let
\(\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}\)
⇒ x = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2) .... (1)
Putting x = 1 in equation (1), we get
1 = A(1 - 2) (1 - 3) + 0 + 0
⇒ 1 = A( - 1) (- 2) = 2A
∴ A = \(\frac{1}{2}\)
Putting x = 2 in equation (1), we get
2 = B(2 - 1) (2 - 3)
⇒ 2 = B(1) (- 1)
⇒ 2 = - B
∴ B = - 2
Putting x = 3 in equation (1), we get
3 = C(3 - 1) (3 - 2) = C(2) × 1
⇒ 3 = 2C
C = \(\frac{3}{2}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 4

Question 5.
\(\frac{2 x}{x^{2}+3 x+2}\)
Answer:
Let \(\frac{2 x}{x^{2}+3 x+2}=\frac{2 x}{(x+1)(x+2)}\)
\(\frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)}\)
⇒ 2x = A(x + 2) + B(x + 1)
Putting x = - 1 in equation (1), we get
2 × (- 1) = A(- 1 + 2)A
- 2 = A
∴ A = - 2
Putting x = - 2 in equation (1). we get
2 × (- 2) = B(- 2 + 1) = - B
⇒ - 4 = - B
∴ B = 4
\(\frac{2 x}{x^{2}+3 x+2}=\frac{-2}{x+1}+\frac{4}{x+2}\)
\(\int \frac{2 x d x}{x^{2}+3 x+2}=-2 \int \frac{d x}{x+1}+4 \int \frac{d x}{x+2}\)
= - 2 log |x + 1| + 4 log |x + 2| + C
= 4 log |x + 2| - 2 log |x + 1| + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 6.
\(\frac{1-x^{2}}{x(1-2 x)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 5

Question 7.
\(\frac{x}{\left(x^{2}+1\right)(x-1)}\)
Answer:
Let \(\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1}\)
⇒ x = A(x2 + 1) + (Bx + C) (x - 1)
⇒ x = A(x2 + 1) + (Bx2 + Cx - Bx - C)
⇒ x = (A + B)x2 + (C - B)x + A - C
Comparing the coefficeint of x2, and constant terms in both sides, we have
A + B = 0, C - B = 1, A - C = 0
Now, solving these equation, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 6

Alternative: ∫\(\frac{x d x}{x^{2}+1}\)
Putting x2 + 1 = t
⇒ 2x dx = dt ⇒ x dx = \(\frac{d t}{2}\)
\(\int \frac{x d x}{x^{2}+1}=\frac{1}{2} \int \frac{d t}{t}\)
= \(\frac{1}{2}\)log |t| + C1
= \(\frac{1}{2}\)log |x2 + 1| + C1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 8.
\(\frac{x}{(x-1)^{2}(x+2)}\)
Answer:
Let
\(\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}\)
⇒ x = A(x - 1) (x - 2) + B(x + 2) + C(x - 1)2 ......... (1)
Putting x = 1 in equation (1), we get
1 = B(1 + 2) = 3B
∴ B = \(\frac{1}{3}\)
Putting x = - 2 in equation (1), we get
- 2 = C(- 2 - 1)2
⇒ - 2 = C(- 3)2 = 9C
∴ C = - \(\frac{2}{9}\)
Again, from equation (i), we have
x = A(x2 + x - 2) + B(x + 2) + c(x2 - 2x + 1)
⇒ x = (A + C)x2 + (A + B - 2C)x - 2A + 2B + C
Comparing the coefficients of x2, x and constant terms in both sides, we get
A + C = 0
A + B - 2C = 1
and - 2A + 2B + C = 0
On solving these equations, we get
Then A = \(\frac{2}{9}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 7

Question 9.
\(\frac{3 x+5}{x^{3}-x^{2}-x+1}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 8
⇒ 3x + 5 = A(x - 1) (x + 1) + B(x + 1) + C(x - 1)2
⇒ 3x + 5 = A(x2 - 1) + B(x + 1) + C(x2 - 2x + 1)
⇒ 3x + 5 = (A + C)x2 + (B - 2C)x - A + B + C
Comparing the coefficeints of x2, x and constant terms in both sides, we get
A + C = 0, B - 2C = 3, - A + B + C = 5
Now, solving these equations, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 9

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 10.
\(\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 10
⇒ 2x - 3 = A(x + 1) (2x + 3) + B(x - 1) (2x + 3) + C(x - 1) (x + 1) ..... (1)
Putting x = 1 in equation (1), we get
2 × 1 - 3 = A(1 + 1) (2 × 1 + 3)
⇒ 2 - 3 = A × 2 × 5 = 1OA
⇒ - 1 = 10A
⇒ A = - \(\frac{1}{10}\)
Putting x = - 1 in equation (1), we get
2 × (- 1) - 3 = B( - 1 - 1) (2 × (- 1) + 3)
⇒ - 2 - 3 = B(- 2) (- 2 + 3) = - 2B
⇒ 2B = 5 ⇒ B = \(\frac{5}{2}\)
Putting x = -\(\frac{3}{2}\) in equation (1), we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 11

Question 11.
\(\frac{5 x}{(x+1)\left(x^{2}-4\right)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 12
∴ 5x = A(x - 2) (x + 2) + B(x + 1) (x - 2) + C(x + 1) (x + 2) ...... (1)
Putting x = - 1 in equation (1), we get
5 × (- 1) = A(- 1 - 2) (- 1 + 2)
⇒ - 5 = A(- 3)(1) = - 3A
∴ A = \(\frac{5}{3}\)
Putting x = -2 in equation (1), we get
5 × (- 2) = B(- 2 + 1) (- 2 - 2)
⇒ - 10 = B(- 1) (- 4) = 4B
∴ B = - \(\frac{10}{4}\) = - \(\frac{5}{2}\)
Putting x = 2 in equation (1), we get
5 × 2 = C(2 + 1) (2 + 2)
⇒ 10 = c(3) (4)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 12.
\(\frac{x^{3}+x+1}{x^{2}-1}\)
Answer:
Here, the given integrand is an improper rational function.
Divide x3 + x + 1 by x2 - 1, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 14
⇒ 2x + 1 = A(x + 1) + B(x - 1)
Putting x = 1 in equation (1), we get
2 × 1 + 1 = A(1 + 1) + 0
⇒ 3 = 2A
∴ A = \(\frac{3}{2}\)
Again putting x = - 1 in equation (1), we get
2(- 1) + 1 = B(- 1 - 1) = - 2B
⇒ - 2 + 1 = - 2B .
⇒ - 1 = - 2B
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 15

Question 13.
\(\frac{2}{(1-x)\left(1+x^{2}\right)}\)
Answer:
\(\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{1+x^{2}}\)
⇒ 2 = A(1 + x) + (Bx + C) (1 - x)
⇒ 2 = A + Ax2 + Bx - Bx2 + C - Cx
⇒ 2 = (A - B)x2 + (B - C)x + A + C
Comparing the coefficients of x2, x and constant terms in both sides, we get
A - B = 0, B - C = 0, A + C = 2
Now, solving these equation, we get
A = 1, B = 1, C = 1
rbse solutions for class 12 maths chapter 7 integrals ex 75 16

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 14.
\(\frac{3 x-1}{(x+2)^{2}}\)
Answer:
\(\frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}\)
⇒ 3x - 1 = A(x + 2) + B
⇒ 3x - 1 = Ax + 2A + B
Comparing the coefficient of x and constant terms in both sides, we get
A = 3, 2A + B = - 1
⇒ 2 × 3 + B = - 1
∴ B = - 1 - 6 = - 7
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 17

Question 15.
\(\frac{1}{x^{4}-1}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 18
⇒ 1 = A(x + 1) (x2 + 1) + B(x2 + 1) (x - 1) + (Cx + D) (x - 1) (x + 1)
⇒ 1 = A(x3 + x2 + x + 1) + B(x3 - x2 + x - 1) + (Cx + D) (x2 - 1)
⇒ 1 = A(x3 + x2 + x + 1) + B(x3 - x2 + x - 1) + (Cx3 - Cx + Dx2 - D)
⇒ 1 = (A + B + C)x3 + (A - B + D)x2 + (A + B - C)x + A - B - D
Comparing the coefficient of x3, x2, x and constant term in both side, we get
A + B + C = 0
A - B + D = 0
A + B - C = 0
and A - B - D = 1
Now, solving these equation, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 19

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 16.
\(\frac{1}{x\left(x^{n}+1\right)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 20

Question 17.
\(\frac{\cos x}{(1-\sin x)(2-\sin x)}\)
Answer:
Let I = ∫\(\frac{\cos x}{(1-\sin x)(2-\sin x)}\) dx
Putting sin x= t
⇒ cos x dx = dt
\(\int \frac{\cos x}{(1-\sin x)(2-\sin x)}=\int \frac{d t}{(1-t)(2-t)}\)
Let \(\frac{1}{(1-t)(2-t)}=\frac{A}{1-t}+\frac{B}{2-t}\)
⇒ 1 = A(2 - t) + B(1 - t)
⇒ 1 = 2A + B - (A + B)t
Equating the coefficients of f and constant terms of both sides, we get
A + B = 0 and 2A + B = 1
Now, solving these equations, we get
A = 1 and B = - 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 21

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 18.
\(\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}\)
Answer:
Here, the given integral is improper rational function. Now putting x2 = y, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 22
⇒ 4y + 10 = A(y + 4) + B(y + 3)
Putting y = - 3
4 × (- 3) + 10 = A(- 3 + 4)
⇒ - 12 + 10 = A
∴ A = - 2
Putting y = - 4
4(- 4) + 10 = B(- 4 + 3)
⇒ - 16 + 10 = - B
∴ B = 6
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 23

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 19.
\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}\)
Answer:
Let I = ∫\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}\) dx
putting x2 = t
⇒ 2x dx = dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 24
or 1 = A(t + 3) + B(t + 1)
1 = (A + B)t + 3A + B
Equating the coefficients of t and constant terms of both sides, we get
A + B = 0 and 3A + B = 1
Now, solving equations, we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 25

Question 20.
\(\frac{1}{x\left(x^{4}-1\right)}\)
Answer:
Let I = \(\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{4 x^{3}}{x^{4}\left(x^{4}-1\right)}\)
[Multiplying numerator and denominator by 4x3]
Putting x4 = t
⇒ 4x3 dx = dt
∴ I = \(\frac{1}{4} \int \frac{d t}{t(t-1)}\)
Now, \(\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}\)
Equating the coefficients of t and constant terms of both sides, we get
A + B = 0, A = - 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 26

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 21.
\(\frac{1}{\left(e^{x}-1\right)}\)
Answer:
Let I = \(\int \frac{d x}{\left(e^{x}-1\right)}=\int \frac{e^{x} d x}{e^{x}\left(e^{x}-1\right)}\)
[Multiplying numerator and denominator by ex]
Putting ex = t ⇒ ex dx = dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 27

Question 22.
\(\frac{x d x}{(x-1)(x-2)}\) equals:
(A) log\(\left|\frac{(x-1)^{2}}{x-2}\right|\) + C
(B) log\(\left|\frac{(x-2)^{2}}{x-1}\right|\) + C
(C) log\(\left|\left(\frac{x-1}{x-2}\right)^{2}\right|\) + C
(D) log |(x - 1) (x - 2)| + C
Answer:
Let \(\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}\)
x = A(x - 2) + B(x - 1)
Putting x = 1
⇒ 1 = A(1 - 2) = - A
∴ A = - 1
Putting x = 2
⇒ 2 = B(2 - 1) = B
∴ B = 2
\(\frac{x}{(x-1)(x-2)}=\frac{-1}{x-1}+\frac{2}{x-2}\)
∴ ∫\(\frac{x}{(x-1)(x-2)}\)
= - ∫\(\frac{d x}{x-1}\) + 2 ∫\(\frac{d x}{x-2}\)
= - log |x - 1| + 2 log |x - 2| + C
= - log |x - 1| + log | (x - 2)2 | + C
= log \(\left|\frac{(x-2)^{2}}{(x-1)}\right|\) + C
Hence, (B) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5

Question 23.
\(\frac{d x}{x\left(x^{2}+1\right)}\) equals:
(A) log |x| - \(\frac{1}{2}\) log |x2 + 1 | + C
(B) log |x| + \(\frac{1}{2}\) log |x2 + 1| + C
(C) - log |x| + \(\frac{1}{2}\) log |x2 + 1| + C
(D) \(\frac{1}{2}\) log |x| + log |x2 + | + C
Answer:
Let I = ∫\(\frac{d x}{x\left(x^{2}+1\right)}\)
= ∫\(\frac{x}{x\left(x^{2}+1\right)}\) dx
[Multiplying numerator and denominator by x]
Putting x2 = t
⇒ 2x dx = dt ⇒ x dx = \(\frac{1}{2}\) dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 28
⇒ 1 = A(t + 1) + Bt
putting, t = 0
⇒ 1 = A(0 + 1) + B × 0 = A
∴ A = 1
Putting, t = - 1
⇒ 1 = B(- 1)
∴ B = - 1
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.5 29

Bhagya
Last Updated on Nov. 3, 2023, 9:28 a.m.
Published Nov. 2, 2023