RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.4

Question 1.
\(\frac{3 x^{2}}{x^{6}+1}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 2.
\(\frac{1}{\sqrt{1+4 x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 2

Question 3.
\(\frac{1}{\sqrt{(2-x)^{2}+1}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 3

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 4.
\(\frac{1}{\sqrt{9-25 x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 4

Question 5.
\(\frac{3 x}{1+2 x^{4}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 5

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 6.
\(\frac{x^{2}}{1-x^{6}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 6

Question 7.
\(\frac{x-1}{\sqrt{x^{2}-1}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 7

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 8.
\(\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 8

Question 9.
\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\)
Answer:
Let I = ∫\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\) dx
Putting tan x = t
⇒ sec2 x dx = dt
∴ I = ∫\(\frac{d t}{\sqrt{t^{2}+4}}\)
= log |t + \(\sqrt{t^{2}+4}\)| + C
= log |tan x + \(\sqrt{\tan ^{2} x+4}\)| + C

Question 10.
\(\frac{1}{\sqrt{x^{2}+2 x+2}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 9

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 11.
\(\frac{1}{9 x^{2}+6 x+5}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 10

Question 12.
\(\frac{1}{\sqrt{7-6 x-x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 11

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 13.
\(\frac{1}{\sqrt{(x-1)(x-2)}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 12

Question 14.
\(\frac{1}{\sqrt{8+3 x-x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 13

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 15.
\(\frac{1}{\sqrt{(x-a)(x-b)}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 14

Question 16.
\(\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 15

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 17.
\(\frac{x+2}{\sqrt{x^{2}-1}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 16

Question 18.
\(\frac{5 x-2}{1+2 x+3 x^{2}}\)
Answer:
Let I = ∫\(\frac{5 x-2}{1+2 x+3 x^{2}}\) dx
Let A and B are two numbers such that:
5x - 2 = A \(\frac{d}{d x}\) (1 + 2x + 3x2) + B
⇒ 5x - 2 = A(2 + 6x) + B
⇒ 5x - 2 = 6Ax + 2A + B
Comparing the coefficients of x and constant terms in both sides,
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 17
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 18

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 19.
\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\)
Answer:
Let I = ∫\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\) dx
= ∫\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\) dx
Let A and B are two numbers such that:
6x + 7 = A \(\frac{d}{d x}\)(x2 - 9x + 20) + B
⇒ 6x + 7 = A(2x - 9) + B
⇒ 6x + 7 = 2A - 9A + B
Comparing the coefficients of x and constant terms in both sides, we get
2A = 6 and - 9A + B = 7
A = 3 and - 27 + B = 7 ⇒ B = 27 + 7 = 34
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 19
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 20

Question 20.
\(\frac{x+2}{\sqrt{4 x-x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 21
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 22

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 21.
\(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 23

Question 22.
\(\frac{x+3}{x^{2}-2 x-5}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 24
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 25

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 23.
\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\)
Answer:
Let I = ∫\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\) dx
Let A and B are two numbers such that:
5x + 3 = A \(\frac{d}{d x}\) (x2 + 4x + 10) + B
⇒ 5x + 3 = A(2x + 4) + B
⇒ 5x + 3 = 2Ax + 4A + B
Comparing the coefficients of x and constant terms from both sides, we have
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 26
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 27

Question 24.
\(\frac{d x}{x^{2}+2 x+2}\) equals:
(A) x tan-1 (x + 1) + C
(B) tan-1 (x + 1) + C
(C) (x + 1) sin-1 x + C
(D) tan-1 x + C
Answer:
\(\frac{d x}{x^{2}+2 x+2}\) = ∫\(\frac{d x}{x^{2}+2 x+1+1}\)
= ∫\(\frac{d x}{(x+1)^{2}+1^{2}}\) = tan-1 \(\left(\frac{x+1}{1}\right)\) + C
= tan-1 (x + 1) + C
Hence, (B) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Question 25.
\(\frac{d x}{\sqrt{9 x-4 x^{2}}}\) equals:
(A) \(\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C\)
(B) \(\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C\)
(C) \(\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+C\)
(D) \(\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+C\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 28
Hence, (B) is the correct answer.

Bhagya
Last Updated on Nov. 3, 2023, 9:27 a.m.
Published Nov. 2, 2023