RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.3

Question 1.
sin2 (2x + 5)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 2.
sin 3x cos 4x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 2

Question 3.
cos 2x cos 4x cos 6x
Answer:
Let I = ∫cos 2x cos 4x cos 6x dx
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 3

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 4.
sin3 (2x + 1)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 4

Question 5.
sin3 x cos3 x
Answer:
Let I = ∫ sin3 x cos3 x dx
= ∫sin x sin2 x cos3 x dx
= ∫sin x (1 - cos2 x) cos3 x dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫sin x(1 - cos2 x) cos3 x dx
= - ∫(1 - t2) t3 dt
= - ∫ (t3 - t5) dt
= ∫t5 dt - ∫t3 dt
= \(\frac{t^{6}}{6}-\frac{t^{4}}{4}\) + C
= \(\frac{1}{6}\) cos6 x - \(\frac{1}{4}\) cos4 x + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 6.
sin x sin 2x sin 3x
Answer:
Let I = ∫sin x sin 2x sin 3x
= \(\frac{1}{2}\) ∫2 sin x sin 2x sin 3x dx
[Multiplying numerator and denominator by 2]
= \(\frac{1}{2}\) ∫ (2 sin x sin 2x) sin 3x dx
= \(\frac{1}{2}\) ∫ [cos(x - 2x) - cos(x + 2x)] sin 3x dx
[∵ 2 sin A sin B = cos(A - B) - cos (A + B)]
= \(\frac{1}{2}\) ∫ [cos (- x) - cos 3x] sin 3x dx
= \(\frac{1}{2}\) ∫ (cos x - cos 3x) sin 3x dx [∵ cos (- θ) = cos θ)]
= \(\frac{1}{2}\) ∫cos x sin x dx - \(\frac{1}{2}\) ∫ cos 3x sin 3x dx
= \(\frac{1}{4}\) ∫ 2 sin 3x cos x dx - \(\frac{1}{4}\) ∫ 2 cos 3x sin 3x dx
[Multiplying numerator and denominator by 2]
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 5

Question 7.
sin 4x sin 8x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 6

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 8.
\(\frac{1-\cos x}{1+\cos x}\)
Answer:
Let
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 7

Question 9.
\(\frac{\cos x}{1+\cos x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 8

Question 10.
sin4 x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 9

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 11.
cos4 2x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 10

Question 12.
\(\frac{\sin ^{2} x}{1+\cos x}\)
Answer:
\(\frac{\sin ^{2} x}{1+\cos x} dx = ∫\frac{1-\cos ^{2} x}{1+\cos x}\) dx
= ∫ \(\frac{(1-\cos x)(1+\cos x)}{(1+\cos x)}\) dx
= ∫ (1 - cos x) dx = ∫ dx - ∫ cos x dx
= x - sin x + C

Question 13.
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 11
= 2 ∫ (cos x + cos α) dx
= 2 ∫ cos x dx + 2 ∫ cos α dx
= 2 sin x + 2x cos α + C
= 2(sin x + x cos α) + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 14.
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 12

Question 15.
tan3 2x sec 2x
Answer:
Let I = ∫tan3 2x
= ∫tan2 2x.tan 2x sec 2x dx
= ∫ (sec2 2x - 1) tan 2x sec 2x dx
Putting sec 2x = t
⇒ 2 sec 2x tan 2x dx = dt
⇒ sec 2x tan 2x dx = \(\frac{1}{2}\) dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 13

Question 16.
tan4 x
Answer:
Let I = ∫ tan4 x dx = ∫ tan2 x.tan2 x dx
= ∫ tan2 x (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ tan2 x dx
= ∫ tan2 x sec2 x dx - ∫ (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ sec2 x dx + ∫ dx .......... (i)
Putting tan x = t
⇒ sec2 x dx = dt
∴ ∫ tan2 x sec2 x dx = ∫ t2 dt
= \(\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}\)
From (i),
∴ ∫ tan2 x sec2 x dx - ∫ sec2 x dx + ∫ dx
= \(\frac{\tan ^{3} x}{3}\) - tan x + x + C
= \(\frac{1}{3}\)tan3 x - tan x + x + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 17.
\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 14
= ∫ sec x tan x dx + ∫cosec x cot x dx
= sec x - cosec x + C

Question 18.
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 15

Question 19.
\(\frac{1}{\sin x \cos ^{3} x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 16

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 20.
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 17

Question 21.
sin-1 (cos x)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 18

Question 22.
\(\frac{1}{\cos (x-a) \cos (x-b)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 19

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

Question 23.
\(\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\) dx is equal to:
(A) tan x + cot x + C
(B) tan x + cosec x + C
(C) - tan x + cot x + C
(D) tan x + sec x + C
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 20
= ∫ sec2 x dx - ∫ cosec2 x dx
= tan x + cot x + C
Hence, (A) is the correct answer.

Question 24.
\(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx equals:
(A) - cot (exx) + C
(B) tan (xex) + C
(C) tan (ex) + C
(D) cot (ex) + C
Answer:
\(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx
Putting ex x = t
⇒ (xex + ex) dx = dt
⇒ ex (1 + x) dx = dt
∴ ∫\(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx = ∫\(\frac{d t}{\cos ^{2} t}\)
= ∫ sec2 t dt
= tan t + C
= tan (exx) + C
Hence, (B) is correct answer.

Bhagya
Last Updated on Nov. 3, 2023, 9:24 a.m.
Published Nov. 2, 2023