Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
sin2 (2x + 5)
Answer:
Question 2.
sin 3x cos 4x
Answer:
Question 3.
cos 2x cos 4x cos 6x
Answer:
Let I = ∫cos 2x cos 4x cos 6x dx
Question 4.
sin3 (2x + 1)
Answer:
Question 5.
sin3 x cos3 x
Answer:
Let I = ∫ sin3 x cos3 x dx
= ∫sin x sin2 x cos3 x dx
= ∫sin x (1 - cos2 x) cos3 x dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫sin x(1 - cos2 x) cos3 x dx
= - ∫(1 - t2) t3 dt
= - ∫ (t3 - t5) dt
= ∫t5 dt - ∫t3 dt
= \(\frac{t^{6}}{6}-\frac{t^{4}}{4}\) + C
= \(\frac{1}{6}\) cos6 x - \(\frac{1}{4}\) cos4 x + C
Question 6.
sin x sin 2x sin 3x
Answer:
Let I = ∫sin x sin 2x sin 3x
= \(\frac{1}{2}\) ∫2 sin x sin 2x sin 3x dx
[Multiplying numerator and denominator by 2]
= \(\frac{1}{2}\) ∫ (2 sin x sin 2x) sin 3x dx
= \(\frac{1}{2}\) ∫ [cos(x - 2x) - cos(x + 2x)] sin 3x dx
[∵ 2 sin A sin B = cos(A - B) - cos (A + B)]
= \(\frac{1}{2}\) ∫ [cos (- x) - cos 3x] sin 3x dx
= \(\frac{1}{2}\) ∫ (cos x - cos 3x) sin 3x dx [∵ cos (- θ) = cos θ)]
= \(\frac{1}{2}\) ∫cos x sin x dx - \(\frac{1}{2}\) ∫ cos 3x sin 3x dx
= \(\frac{1}{4}\) ∫ 2 sin 3x cos x dx - \(\frac{1}{4}\) ∫ 2 cos 3x sin 3x dx
[Multiplying numerator and denominator by 2]
Question 7.
sin 4x sin 8x
Answer:
Question 8.
\(\frac{1-\cos x}{1+\cos x}\)
Answer:
Let
Question 9.
\(\frac{\cos x}{1+\cos x}\)
Answer:
Question 10.
sin4 x
Answer:
Question 11.
cos4 2x
Answer:
Question 12.
\(\frac{\sin ^{2} x}{1+\cos x}\)
Answer:
∫\(\frac{\sin ^{2} x}{1+\cos x} dx = ∫\frac{1-\cos ^{2} x}{1+\cos x}\) dx
= ∫ \(\frac{(1-\cos x)(1+\cos x)}{(1+\cos x)}\) dx
= ∫ (1 - cos x) dx = ∫ dx - ∫ cos x dx
= x - sin x + C
Question 13.
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\)
Answer:
= 2 ∫ (cos x + cos α) dx
= 2 ∫ cos x dx + 2 ∫ cos α dx
= 2 sin x + 2x cos α + C
= 2(sin x + x cos α) + C
Question 14.
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
Answer:
Question 15.
tan3 2x sec 2x
Answer:
Let I = ∫tan3 2x
= ∫tan2 2x.tan 2x sec 2x dx
= ∫ (sec2 2x - 1) tan 2x sec 2x dx
Putting sec 2x = t
⇒ 2 sec 2x tan 2x dx = dt
⇒ sec 2x tan 2x dx = \(\frac{1}{2}\) dt
Question 16.
tan4 x
Answer:
Let I = ∫ tan4 x dx = ∫ tan2 x.tan2 x dx
= ∫ tan2 x (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ tan2 x dx
= ∫ tan2 x sec2 x dx - ∫ (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ (sec2 x - 1) dx
= ∫ tan2 x sec2 x dx - ∫ sec2 x dx + ∫ dx .......... (i)
Putting tan x = t
⇒ sec2 x dx = dt
∴ ∫ tan2 x sec2 x dx = ∫ t2 dt
= \(\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}\)
From (i),
∴ ∫ tan2 x sec2 x dx - ∫ sec2 x dx + ∫ dx
= \(\frac{\tan ^{3} x}{3}\) - tan x + x + C
= \(\frac{1}{3}\)tan3 x - tan x + x + C
Question 17.
\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
Answer:
= ∫ sec x tan x dx + ∫cosec x cot x dx
= sec x - cosec x + C
Question 18.
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\)
Answer:
Question 19.
\(\frac{1}{\sin x \cos ^{3} x}\)
Answer:
Question 20.
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\)
Answer:
Question 21.
sin-1 (cos x)
Answer:
Question 22.
\(\frac{1}{\cos (x-a) \cos (x-b)}\)
Answer:
Question 23.
∫ \(\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\) dx is equal to:
(A) tan x + cot x + C
(B) tan x + cosec x + C
(C) - tan x + cot x + C
(D) tan x + sec x + C
Answer:
= ∫ sec2 x dx - ∫ cosec2 x dx
= tan x + cot x + C
Hence, (A) is the correct answer.
Question 24.
∫ \(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx equals:
(A) - cot (exx) + C
(B) tan (xex) + C
(C) tan (ex) + C
(D) cot (ex) + C
Answer:
∫ \(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx
Putting ex x = t
⇒ (xex + ex) dx = dt
⇒ ex (1 + x) dx = dt
∴ ∫\(\frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)}\) dx = ∫\(\frac{d t}{\cos ^{2} t}\)
= ∫ sec2 t dt
= tan t + C
= tan (exx) + C
Hence, (B) is correct answer.