RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.2

Question 1.
\(\frac{2 x}{1+x^{2}}\)
Answer:
Let I = ∫ \(\frac{2 x}{1+x^{2}}\) dx
Putting 1 + x2 = t
⇒ 2x dx = dt
∴ ∫ \(\frac{2 x}{1+x^{2}}\) dx = ∫ \(\frac{d t}{t}\)
= log |t| + C
= log |1 + x2| + C
= log (1 + x2) + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 2.
\(\frac{(\log x)^{2}}{x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 1

Question 3.
\(\frac{1}{(x+x \log x)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 2

Question 4.
sin x sin (cos x)
Answer:
Let I = ∫sin x sin (cos x) dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sin x sin (cos x) dx = - ∫ sin t dt
= + cos t + C
= cos (cos x) + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 5.
sin (ax + b) cos (ax + b)
Answer:
Let I = ∫ sin (ax + b) cos (ax + b) dx
Putting sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
⇒ cos (ax + b) dx = \(\frac{d t}{a}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 3

Remark : Here, we can also evaluate integral by assuming cos (ax + b) = t.
Putting cos(ax + b) = t
⇒ - a sin(ax + b) dx = dt
⇒ sin (ax + b) dx = - \(\frac{d t}{a}\)
∴ ∫sin (ax + b) cos(ax + b)dx
= - \(\int \frac{t d t}{a}=-\frac{1}{a} \int t\) dt
= - \(\frac{1}{a} \cdot \frac{t^{2}}{2}\) + C
= - \(\frac{\cos ^{2}(a x+b)}{2 a}\) + C

Second Method:
∫ sin (ax + b) cos (ax + b) dx
= \(\frac{1}{2}\) ∫ 2 sin (ax + b) cos (ax + b) dx
[Multiplying numerator and denominator by 2]
= \(\frac{1}{2}\) ∫ sin 2(ax + b) dx
= \(\frac{1}{2}\) ∫ sin (2ax + 2b) dx
Putting 2ax + 2b = t
⇒ 2a dx = dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 4

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 6.
x\(\sqrt{a x+b}\)
Answer:
Let I = ∫ \(\sqrt{a x+b}\) dx = ∫ (ax + b)1/2 dx
Putting ax + b = t
⇒ a dx = dt
⇒ dx = \(\frac{d t}{a}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 5

Question 7.
x\(\sqrt{x+2}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 6

Question 8.
x\(\sqrt{1+2 x^{2}}\)
Answer:
Let I = ∫ x\(\sqrt{1+2 x^{2}}\) dx
Putting 1 + 2x2 = t
⇒ 4 dx = dt
⇒ x dx = \(\frac{d t}{4}\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 7

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 9.
(4x + 2) \(\sqrt{x^{2}+x+1}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 8

Question 10.
\(\frac{1}{x-\sqrt{x}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 9

Question 11.
\(\frac{x}{\sqrt{x+4}}\), x > 0
Answer:
Let I = ∫ \(\frac{x}{\sqrt{x+4}}\) dx
Putting x + 4 = t
⇒ dx = dt
and x = t - 4
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 10

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 12.
(x3 - 1)1/3 x5
Answer:
Let I = ∫ (x3 - 1)1/3 x5
Putting x3 - 1 = t
⇒ 3x2 dx = dt
⇒ x2 dx = \(\frac{d t}{3}\)
and x3 = t + 1
∴ ∫ (x3 - 1)1/3 x5 dx = ∫ (x3 - )1/3 . x3 .x2 dx
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 11

Question 13.
\(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\)
Answer:
Let I = ∫ \(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\) dx
Putting 2 + 3x3 = t
⇒ 9x2 dx = dt
⇒ x2 dx = \(\frac{1}{9}\) dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 12

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 14.
\(\frac{1}{x(\log x)^{m}}\), x > 0 , m ≠ 1
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 13

Question 15.
\(\frac{x}{9-4 x^{2}}\)
Answer:
Let I = ∫ \(\frac{x}{9-4 x^{2}}\) dx
Putting 9 - 4x2 = t
⇒ - 8x dx = dt
⇒ x dx = - \(\frac{1}{8} \)dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 14

Question 16.
e2x + 3
Answer:
Let I = ∫ e2x + 3 dx
= ∫ e2x . e3 dx
= e3 ∫ e2x dx
Putting 2x = t
⇒ 2 dx = dt
⇒ dx = \(\frac{d t}{2}\)
∴ ∫ e2x + 3 dx = e3 ∫ et
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 15

Alter: ∫ e2x + 3 dx
Let 2x + 3 = t
2 dx = dt
or dx = \(\frac{d t}{2}\)
∴ ∫ e2x + 3 dx = \(\frac{1}{2}\) ∫ et dt = \(\frac{1}{2}\) et + C
= \(\frac{1}{2}\) e2x + 3 + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 17.
\(\frac{x}{e^{x^{2}}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 16

Question 18.
\(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 17

Question 19.
\(\frac{e^{2 x}-1}{e^{2 x}+1}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 18

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 20.
\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Answer:
Let I = \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Putting e2x + e-2x = t
⇒ (2e2x - 2e-2x) dx = dt
⇒ (e2x - e-2x) = \(\frac{1}{2}\) dt
∴ ∫\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\) dx = \(\frac{1}{2} \int \frac{1}{t}\) dt
= log |t| + C
= log |e2x + e-2x| + C

Question 21.
tan2 (2x - 3)
Answer:
Let I = ∫ tan2 (2x - 3) dx
= ∫ {sec2 (2x - 3) - 1} dx
= ∫ sec2 (2x - 3) dx - ∫ dx
Putting 2x - 3 = t
⇒ 2dx = dt
⇒ dx = \(\frac{1}{2}\)dt
∴ ∫ tan2 (2x - 3) dx = ∫ sec2 (2x - 3) dx = ∫ dx
= \(\frac{1}{2}\) ∫ sec2 t.dt - ∫ dx
= \(\frac{1}{2}\) tan t - x + C
= \(\frac{1}{2}\) tan (2x - 3) - x + C

Question 22.
sec2 (7 - 4x)
Answer:
Let I = ∫ sec2 (7 - 4x) dx
Putting 7 - 4x = t
⇒ - 4 dx = dt
⇒ dx = - \(\frac{1}{4}\) dt
∴ ∫ sec2 (7 - 4x) dx = - \(\frac{1}{4}\) ∫sec2 t dt
= - \(\frac{1}{4}\) tan t + C
= - \(\frac{1}{4}\) tan (7 - 4x) + C

Question 23.
\(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\)
Answer:
Let I = ∫ \(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\) dx
Putting sin-1 x = t
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 19

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 24.
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 20
Putting 3 cos x + 2 sin x = t
⇒ (- 3 sin x + 2 cos x) dx = dt
⇒ (2 cos x - 3 sin x) dx = dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 21

Question 25.
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 22

Question 26.
\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 23

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 27.
\(\sqrt{\sin 2 x}\) cos 2x
Answer:
Let I = ∫ \(\sqrt{\sin 2 x}\) cos 2x dx
Putting sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ cos 2x dx = \(\frac{1}{2}\) dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 24

Question 28.
\(\frac{\cos x}{\sqrt{1+\sin x}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 25

Question 29.
cot x log sin x
Answer:
Let I = ∫ cot x log sin x dx
Putting log sin x = t
\(\frac{1}{\sin x}\) × cos x dx = dt
⇒ cot x dx = dt
∴ ∫ cot x (log sin x) dx = ∫t dt = \(\frac{t^{2}}{2}\) + C
= \(\frac{(\log \sin x)^{2}}{2}\) + C

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 30.
\(\frac{\sin x}{1+\cos x}\)
Answer:
Let I = ∫ \(\frac{\sin x}{1+\cos x}\) dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ \(\frac{\sin x}{1+\cos x}\) dx = - ∫ \(\frac{1}{t}\) dt
= - log |t| + C
= - log |(1 + cos x)| + C

Question 31.
\(\frac{\sin x}{(1+\cos x)^{2}}\)
Answer:
Let I = ∫ \(\frac{\sin x}{(1+\cos x)^{2}}\) dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 26

Question 32.
\(\frac{1}{(1+\cot x)}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 27

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 33.
\(\frac{1}{1-\tan x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 28

Question 34.
\(\frac{\sqrt{\tan x}}{\sin x \cos x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 29

Question 35.
\(\frac{(1+\log x)^{2}}{x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 30

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 36.
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 31

Question 37.
\(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 32

Question 38.
\(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx equals:
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10)-1
(D) log (10x + x10) + C
Answer:
Let x10 + 10x = t
⇒ (10x9 + 10x loge 10) dx = dt
∴ ∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx = ∫\(\frac{d t}{t}\)
= log |t| + C
= log (x10 + 10x) + C
Hence, (D) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2

Question 39.
\(\frac{d x}{\sin ^{2} x \cos ^{2} x}\) equals:
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 33
Hence, (B) is the correct answer.

Bhagya
Last Updated on Nov. 3, 2023, 9:23 a.m.
Published Nov. 2, 2023