Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
2x1+x2
Answer:
Let I = ∫ 2x1+x2 dx
Putting 1 + x2 = t
⇒ 2x dx = dt
∴ ∫ 2x1+x2 dx = ∫ dtt
= log |t| + C
= log |1 + x2| + C
= log (1 + x2) + C
Question 2.
(logx)2x
Answer:
Question 3.
1(x+xlogx)
Answer:
Question 4.
sin x sin (cos x)
Answer:
Let I = ∫sin x sin (cos x) dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sin x sin (cos x) dx = - ∫ sin t dt
= + cos t + C
= cos (cos x) + C
Question 5.
sin (ax + b) cos (ax + b)
Answer:
Let I = ∫ sin (ax + b) cos (ax + b) dx
Putting sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
⇒ cos (ax + b) dx = dta
Remark : Here, we can also evaluate integral by assuming cos (ax + b) = t.
Putting cos(ax + b) = t
⇒ - a sin(ax + b) dx = dt
⇒ sin (ax + b) dx = - dta
∴ ∫sin (ax + b) cos(ax + b)dx
= - ∫tdta=−1a∫t dt
= - 1a⋅t22 + C
= - cos2(ax+b)2a + C
Second Method:
∫ sin (ax + b) cos (ax + b) dx
= 12 ∫ 2 sin (ax + b) cos (ax + b) dx
[Multiplying numerator and denominator by 2]
= 12 ∫ sin 2(ax + b) dx
= 12 ∫ sin (2ax + 2b) dx
Putting 2ax + 2b = t
⇒ 2a dx = dt
Question 6.
x√ax+b
Answer:
Let I = ∫ √ax+b dx = ∫ (ax + b)1/2 dx
Putting ax + b = t
⇒ a dx = dt
⇒ dx = dta
Question 7.
x√x+2
Answer:
Question 8.
x√1+2x2
Answer:
Let I = ∫ x√1+2x2 dx
Putting 1 + 2x2 = t
⇒ 4 dx = dt
⇒ x dx = dt4
Question 9.
(4x + 2) √x2+x+1
Answer:
Question 10.
1x−√x
Answer:
Question 11.
x√x+4, x > 0
Answer:
Let I = ∫ x√x+4 dx
Putting x + 4 = t
⇒ dx = dt
and x = t - 4
Question 12.
(x3 - 1)1/3 x5
Answer:
Let I = ∫ (x3 - 1)1/3 x5
Putting x3 - 1 = t
⇒ 3x2 dx = dt
⇒ x2 dx = dt3
and x3 = t + 1
∴ ∫ (x3 - 1)1/3 x5 dx = ∫ (x3 - )1/3 . x3 .x2 dx
Question 13.
x2(2+3x3)3
Answer:
Let I = ∫ x2(2+3x3)3 dx
Putting 2 + 3x3 = t
⇒ 9x2 dx = dt
⇒ x2 dx = 19 dt
Question 14.
1x(logx)m, x > 0 , m ≠ 1
Answer:
Question 15.
x9−4x2
Answer:
Let I = ∫ x9−4x2 dx
Putting 9 - 4x2 = t
⇒ - 8x dx = dt
⇒ x dx = - 18dt
Question 16.
e2x + 3
Answer:
Let I = ∫ e2x + 3 dx
= ∫ e2x . e3 dx
= e3 ∫ e2x dx
Putting 2x = t
⇒ 2 dx = dt
⇒ dx = dt2
∴ ∫ e2x + 3 dx = e3 ∫ et
Alter: ∫ e2x + 3 dx
Let 2x + 3 = t
2 dx = dt
or dx = dt2
∴ ∫ e2x + 3 dx = 12 ∫ et dt = 12 et + C
= 12 e2x + 3 + C
Question 17.
xex2
Answer:
Question 18.
etan−1x1+x2
Answer:
Question 19.
e2x−1e2x+1
Answer:
Question 20.
e2x−e−2xe2x+e−2x
Answer:
Let I = e2x−e−2xe2x+e−2x
Putting e2x + e-2x = t
⇒ (2e2x - 2e-2x) dx = dt
⇒ (e2x - e-2x) = 12 dt
∴ ∫e2x−e−2xe2x+e−2x dx = 12∫1t dt
= log |t| + C
= log |e2x + e-2x| + C
Question 21.
tan2 (2x - 3)
Answer:
Let I = ∫ tan2 (2x - 3) dx
= ∫ {sec2 (2x - 3) - 1} dx
= ∫ sec2 (2x - 3) dx - ∫ dx
Putting 2x - 3 = t
⇒ 2dx = dt
⇒ dx = 12dt
∴ ∫ tan2 (2x - 3) dx = ∫ sec2 (2x - 3) dx = ∫ dx
= 12 ∫ sec2 t.dt - ∫ dx
= 12 tan t - x + C
= 12 tan (2x - 3) - x + C
Question 22.
sec2 (7 - 4x)
Answer:
Let I = ∫ sec2 (7 - 4x) dx
Putting 7 - 4x = t
⇒ - 4 dx = dt
⇒ dx = - 14 dt
∴ ∫ sec2 (7 - 4x) dx = - 14 ∫sec2 t dt
= - 14 tan t + C
= - 14 tan (7 - 4x) + C
Question 23.
sin−1x√1−x2
Answer:
Let I = ∫ sin−1x√1−x2 dx
Putting sin-1 x = t
Question 24.
2cosx−3sinx6cosx+4sinx
Answer:
Putting 3 cos x + 2 sin x = t
⇒ (- 3 sin x + 2 cos x) dx = dt
⇒ (2 cos x - 3 sin x) dx = dt
Question 25.
Answer:
Question 26.
cos√x√x
Answer:
Question 27.
√sin2x cos 2x
Answer:
Let I = ∫ √sin2x cos 2x dx
Putting sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ cos 2x dx = 12 dt
Question 28.
cosx√1+sinx
Answer:
Question 29.
cot x log sin x
Answer:
Let I = ∫ cot x log sin x dx
Putting log sin x = t
⇒ 1sinx × cos x dx = dt
⇒ cot x dx = dt
∴ ∫ cot x (log sin x) dx = ∫t dt = t22 + C
= (logsinx)22 + C
Question 30.
sinx1+cosx
Answer:
Let I = ∫ sinx1+cosx dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sinx1+cosx dx = - ∫ 1t dt
= - log |t| + C
= - log |(1 + cos x)| + C
Question 31.
sinx(1+cosx)2
Answer:
Let I = ∫ sinx(1+cosx)2 dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
Question 32.
1(1+cotx)
Answer:
Question 33.
11−tanx
Answer:
Question 34.
√tanxsinxcosx
Answer:
Question 35.
(1+logx)2x
Answer:
Question 36.
(x+1)(x+logx)2x
Answer:
Question 37.
x3sin(tan−1x4)1+x8
Answer:
Question 38.
∫ 10x9+10xloge10x10+10x dx equals:
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10)-1
(D) log (10x + x10) + C
Answer:
Let x10 + 10x = t
⇒ (10x9 + 10x loge 10) dx = dt
∴ ∫ 10x9+10xloge10x10+10x dx = ∫dtt
= log |t| + C
= log (x10 + 10x) + C
Hence, (D) is the correct answer.
Question 39.
∫ dxsin2xcos2x equals:
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Answer:
Hence, (B) is the correct answer.