Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
\(\frac{2 x}{1+x^{2}}\)
Answer:
Let I = ∫ \(\frac{2 x}{1+x^{2}}\) dx
Putting 1 + x2 = t
⇒ 2x dx = dt
∴ ∫ \(\frac{2 x}{1+x^{2}}\) dx = ∫ \(\frac{d t}{t}\)
= log |t| + C
= log |1 + x2| + C
= log (1 + x2) + C
Question 2.
\(\frac{(\log x)^{2}}{x}\)
Answer:
Question 3.
\(\frac{1}{(x+x \log x)}\)
Answer:
Question 4.
sin x sin (cos x)
Answer:
Let I = ∫sin x sin (cos x) dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sin x sin (cos x) dx = - ∫ sin t dt
= + cos t + C
= cos (cos x) + C
Question 5.
sin (ax + b) cos (ax + b)
Answer:
Let I = ∫ sin (ax + b) cos (ax + b) dx
Putting sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
⇒ cos (ax + b) dx = \(\frac{d t}{a}\)
Remark : Here, we can also evaluate integral by assuming cos (ax + b) = t.
Putting cos(ax + b) = t
⇒ - a sin(ax + b) dx = dt
⇒ sin (ax + b) dx = - \(\frac{d t}{a}\)
∴ ∫sin (ax + b) cos(ax + b)dx
= - \(\int \frac{t d t}{a}=-\frac{1}{a} \int t\) dt
= - \(\frac{1}{a} \cdot \frac{t^{2}}{2}\) + C
= - \(\frac{\cos ^{2}(a x+b)}{2 a}\) + C
Second Method:
∫ sin (ax + b) cos (ax + b) dx
= \(\frac{1}{2}\) ∫ 2 sin (ax + b) cos (ax + b) dx
[Multiplying numerator and denominator by 2]
= \(\frac{1}{2}\) ∫ sin 2(ax + b) dx
= \(\frac{1}{2}\) ∫ sin (2ax + 2b) dx
Putting 2ax + 2b = t
⇒ 2a dx = dt
Question 6.
x\(\sqrt{a x+b}\)
Answer:
Let I = ∫ \(\sqrt{a x+b}\) dx = ∫ (ax + b)1/2 dx
Putting ax + b = t
⇒ a dx = dt
⇒ dx = \(\frac{d t}{a}\)
Question 7.
x\(\sqrt{x+2}\)
Answer:
Question 8.
x\(\sqrt{1+2 x^{2}}\)
Answer:
Let I = ∫ x\(\sqrt{1+2 x^{2}}\) dx
Putting 1 + 2x2 = t
⇒ 4 dx = dt
⇒ x dx = \(\frac{d t}{4}\)
Question 9.
(4x + 2) \(\sqrt{x^{2}+x+1}\)
Answer:
Question 10.
\(\frac{1}{x-\sqrt{x}}\)
Answer:
Question 11.
\(\frac{x}{\sqrt{x+4}}\), x > 0
Answer:
Let I = ∫ \(\frac{x}{\sqrt{x+4}}\) dx
Putting x + 4 = t
⇒ dx = dt
and x = t - 4
Question 12.
(x3 - 1)1/3 x5
Answer:
Let I = ∫ (x3 - 1)1/3 x5
Putting x3 - 1 = t
⇒ 3x2 dx = dt
⇒ x2 dx = \(\frac{d t}{3}\)
and x3 = t + 1
∴ ∫ (x3 - 1)1/3 x5 dx = ∫ (x3 - )1/3 . x3 .x2 dx
Question 13.
\(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\)
Answer:
Let I = ∫ \(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\) dx
Putting 2 + 3x3 = t
⇒ 9x2 dx = dt
⇒ x2 dx = \(\frac{1}{9}\) dt
Question 14.
\(\frac{1}{x(\log x)^{m}}\), x > 0 , m ≠ 1
Answer:
Question 15.
\(\frac{x}{9-4 x^{2}}\)
Answer:
Let I = ∫ \(\frac{x}{9-4 x^{2}}\) dx
Putting 9 - 4x2 = t
⇒ - 8x dx = dt
⇒ x dx = - \(\frac{1}{8} \)dt
Question 16.
e2x + 3
Answer:
Let I = ∫ e2x + 3 dx
= ∫ e2x . e3 dx
= e3 ∫ e2x dx
Putting 2x = t
⇒ 2 dx = dt
⇒ dx = \(\frac{d t}{2}\)
∴ ∫ e2x + 3 dx = e3 ∫ et
Alter: ∫ e2x + 3 dx
Let 2x + 3 = t
2 dx = dt
or dx = \(\frac{d t}{2}\)
∴ ∫ e2x + 3 dx = \(\frac{1}{2}\) ∫ et dt = \(\frac{1}{2}\) et + C
= \(\frac{1}{2}\) e2x + 3 + C
Question 17.
\(\frac{x}{e^{x^{2}}}\)
Answer:
Question 18.
\(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\)
Answer:
Question 19.
\(\frac{e^{2 x}-1}{e^{2 x}+1}\)
Answer:
Question 20.
\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Answer:
Let I = \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Putting e2x + e-2x = t
⇒ (2e2x - 2e-2x) dx = dt
⇒ (e2x - e-2x) = \(\frac{1}{2}\) dt
∴ ∫\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\) dx = \(\frac{1}{2} \int \frac{1}{t}\) dt
= log |t| + C
= log |e2x + e-2x| + C
Question 21.
tan2 (2x - 3)
Answer:
Let I = ∫ tan2 (2x - 3) dx
= ∫ {sec2 (2x - 3) - 1} dx
= ∫ sec2 (2x - 3) dx - ∫ dx
Putting 2x - 3 = t
⇒ 2dx = dt
⇒ dx = \(\frac{1}{2}\)dt
∴ ∫ tan2 (2x - 3) dx = ∫ sec2 (2x - 3) dx = ∫ dx
= \(\frac{1}{2}\) ∫ sec2 t.dt - ∫ dx
= \(\frac{1}{2}\) tan t - x + C
= \(\frac{1}{2}\) tan (2x - 3) - x + C
Question 22.
sec2 (7 - 4x)
Answer:
Let I = ∫ sec2 (7 - 4x) dx
Putting 7 - 4x = t
⇒ - 4 dx = dt
⇒ dx = - \(\frac{1}{4}\) dt
∴ ∫ sec2 (7 - 4x) dx = - \(\frac{1}{4}\) ∫sec2 t dt
= - \(\frac{1}{4}\) tan t + C
= - \(\frac{1}{4}\) tan (7 - 4x) + C
Question 23.
\(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\)
Answer:
Let I = ∫ \(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\) dx
Putting sin-1 x = t
Question 24.
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\)
Answer:
Putting 3 cos x + 2 sin x = t
⇒ (- 3 sin x + 2 cos x) dx = dt
⇒ (2 cos x - 3 sin x) dx = dt
Question 25.
Answer:
Question 26.
\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)
Answer:
Question 27.
\(\sqrt{\sin 2 x}\) cos 2x
Answer:
Let I = ∫ \(\sqrt{\sin 2 x}\) cos 2x dx
Putting sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ cos 2x dx = \(\frac{1}{2}\) dt
Question 28.
\(\frac{\cos x}{\sqrt{1+\sin x}}\)
Answer:
Question 29.
cot x log sin x
Answer:
Let I = ∫ cot x log sin x dx
Putting log sin x = t
⇒ \(\frac{1}{\sin x}\) × cos x dx = dt
⇒ cot x dx = dt
∴ ∫ cot x (log sin x) dx = ∫t dt = \(\frac{t^{2}}{2}\) + C
= \(\frac{(\log \sin x)^{2}}{2}\) + C
Question 30.
\(\frac{\sin x}{1+\cos x}\)
Answer:
Let I = ∫ \(\frac{\sin x}{1+\cos x}\) dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ \(\frac{\sin x}{1+\cos x}\) dx = - ∫ \(\frac{1}{t}\) dt
= - log |t| + C
= - log |(1 + cos x)| + C
Question 31.
\(\frac{\sin x}{(1+\cos x)^{2}}\)
Answer:
Let I = ∫ \(\frac{\sin x}{(1+\cos x)^{2}}\) dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
Question 32.
\(\frac{1}{(1+\cot x)}\)
Answer:
Question 33.
\(\frac{1}{1-\tan x}\)
Answer:
Question 34.
\(\frac{\sqrt{\tan x}}{\sin x \cos x}\)
Answer:
Question 35.
\(\frac{(1+\log x)^{2}}{x}\)
Answer:
Question 36.
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
Answer:
Question 37.
\(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\)
Answer:
Question 38.
∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx equals:
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10)-1
(D) log (10x + x10) + C
Answer:
Let x10 + 10x = t
⇒ (10x9 + 10x loge 10) dx = dt
∴ ∫ \(\frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}}\) dx = ∫\(\frac{d t}{t}\)
= log |t| + C
= log (x10 + 10x) + C
Hence, (D) is the correct answer.
Question 39.
∫ \(\frac{d x}{\sin ^{2} x \cos ^{2} x}\) equals:
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Answer:
Hence, (B) is the correct answer.