RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.11

Question 1.
\(\int_{0}^{\pi / 2}\) cos2 x dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 2.
\(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 2

Question 3.
\(\int_{0}^{\pi / 2} \frac{\sin ^{3 / 2} x}{\sin ^{3 / 2} x+\cos ^{3 / 2} x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 3

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 4.
\(\int_{0}^{\pi / 2} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 4

Question 5.
\(\int_{-5}^{5}\) |x + 2| dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 5

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 6.
\(\int_{2}^{8}\) |x - 5| dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 6

Question 7.
\(\int_{0}^{1}\) x(1 - x)n dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 7

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 8.
\(\int_{0}^{\pi / 4}\) log (1 + tan x) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 8

Question 9.
\(\int_{0}^{2} x\sqrt{2-x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 9

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 10.
\(\int_{0}^{\pi / 2}\) (2 log sin x - log sin 2x) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 10

Question 11.
\(\int_{-\pi / 2}^{\pi / 2}\) sin2 x dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 11

Question 12.
\(\int_{0}^{\pi} \frac{x d x}{1+\sin x}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 12
= π[tan π - tan 0] - π[sec π - sec 0]
= π × 0 - π( - 1 - 1) = 2π
2I = 2π
Thus, I = π

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 13.
\(\int_{-\pi / 2}^{\pi / 2}\) sin7 x dx
Answer:
Let I = \(\int_{-\pi / 2}^{\pi / 2}\) sin7 x dx
Then f(- x) = sin7 (- x) = [sin (- x)]7
= [- sin x]7
⇒ f(- x) = - sin7 x = - f(x)
i.e., sin7 x is an odd function .
\(\int_{-a}^{a}\) f(x) dx = 0 If f(- x) = - f(x)
i.e., f is an odd function.
∴ I = \(\int_{-\pi / 2}^{\pi / 2}\) sin7 x dx = 0

Question 14.
\(\int_{0}^{2 \pi}\) cos5 x dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 13

Question 15.
\(\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cos x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 14

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 16.
\(\int_{0}^{\pi}\) log (1 + cos x) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 15
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 16

Question 17.
\(\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 17

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 18.
\(\int_{0}^{4}\) |x - 1| dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 18

Question 19.
Show that
\(\int_{0}^{a}\) f(x) g(x) dx = 2\(\int_{0}^{a}\) f(x) dx
if f and g are defined as
f(x) = f(a - x) and g(x) + g(a - x) = 4
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 19

Question 20.
The value of
\(\int_{-\pi / 2}^{\pi / 2}\) (x3 + x cos x + tan5 x + 1) dx is:
(A) 0
(B) 2
(C) π
(D) 1
Answer:
Let I = \(\int_{-\pi / 2}^{\pi / 2}\) (x3 + x cos x + tan5 x + 1) dx
= \(\int_{-\pi / 2}^{\pi / 2}\) (x3 + x cos x + tan5 x + 1) dx + \(\int_{-\pi / 2}^{\pi / 2}\) 1 dx
I = I1 + \(\int_{-\pi / 2}^{\pi / 2}\) 1 dx ...... (1)
Again f(x) = x3 + x cos x + tan5 x
= - x3 - x cos x - tan5 x
= - (x3 + x cos x + tan5 x)
= - f(x)
i.e., f is an odd function, because
f(- x) = - f(x)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 20
∴ I = π
Hence, (C) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.111

Question 21.
The value of
\(\int_{0}^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)\) dx is:
(A) 2
(B) \(\frac{3}{4}\)
(C) 0
(D) - 2
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.11 21

Bhagya
Last Updated on Nov. 3, 2023, 9:37 a.m.
Published Nov. 2, 2023