Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
\(\int_{0}^{1} \frac{x}{x^{2}+1}\) dx
Answer:
Let I = \(\int_{0}^{1} \frac{x}{x^{2}+1}\) dx
Put x2 + 1 = t
⇒ 2x dx = dt ⇒ x dx = \(\frac{1}{2}\) dt
When x = 0, then t = 1,
When x = 1, then t = 12 + 1 = 2
Question 2.
\(\int_{0}^{\pi / 2} \sqrt{\sin \phi} \cos ^{5} \phi d \phi\)
Answer:
Let I = \(\int_{0}^{\pi / 2} \sqrt{\sin \phi} \cos ^{5} \phi d \phi\)
Question 3.
\(\int_{0}^{1}\) sin-1 \(\left(\frac{2 x}{1+x^{2}}\right)\) dx
Answer:
Let I = \(\int_{0}^{1}\) sin-1 \(\left(\frac{2 x}{1+x^{2}}\right)\) dx
Putting x = tan θ ⇒ dx = sec2 θ dθ
When x = 1, then θ = \(\frac{\pi}{4}\)
When x = 0, then θ = 0
[Since, tan θ = 1 = tan \(\frac{\pi}{4}\) ∴ θ = \(\frac{\pi}{4}\)]
Now, ∫ θ sec2 θ - ∫ {\(\frac{d}{d \theta}\) (θ) ∫sec2 θ dθ} dθ
= θ tan θ - ∫1.tan θ dθ
= θ tan θ - (- log |cos θ|)
= θ tan θ + log |cos θ|
∴ ∫ θ sec2 θ dθ = θ tan θ + log |cos θ|
Putting the value of ∫θ sec2 θ dθ in (i), we get
Question 4.
\(\int_{0}^{2} x\sqrt{x+2}\) dx
Answer:
Let I = \(\int_{0}^{2} x\sqrt{x+2}\) dx
Putting x + 2 = t2 ⇒ dx = 2t dt
When x = 0, then t = √2
When x = 2, then t2 = 2 + 2 = 4 ⇒ t = 2
Question 5.
\(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x}\) dx,
Putting, cos x = t ⇒ - sin x dx = dt,
⇒ sin x dx = - dt
When x = 0, then t = cos θ = 1,
When x = \(\frac{\pi}{2}\), then t = cos \(\frac{\pi}{2}\) = 0
Question 6.
\(\int_{0}^{2} \frac{d x}{x+4-x^{2}}\)
Answer:
Question 7.
\(\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}\)
Answer:
Question 8.
\(\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x}\) dx
Answer:
Question 9.
The value of the integral
\(\int_{1 / 3}^{1} \frac{\left(x-x^{3}\right)^{1 / 3}}{x^{4}}\) dx is:
(A) 6
(B) 0
(C) 3
(D) 4
Answer:
Again putting cot θ = t ⇒ - cosec2 θ dθ = dt
When θ = sin-1 \(\frac{1}{3}\) ⇒ sin θ = \(\frac{1}{3}\),
Then cot θ = 2√2
∴ t = 2√2 = √8
Hence, (A) is the correct answer.
Question 10.
If f(x) = \(\int_{0}^{x}\) t sin t dt, then f'(x) is:
(A) cot x + x sin x
(B) x sin x
(C) x cos x
(D) sin x + x cos x
Answer:
= - x cos x + sin x
∴ f'(x) = - 1.cos x - x(- sin x) + cos x
= - cos x+ x sin x + cos x
= x sin x
Hence, (B) is the correct answer.