RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.10

Question 1.
\(\int_{0}^{1} \frac{x}{x^{2}+1}\) dx
Answer:
Let I = \(\int_{0}^{1} \frac{x}{x^{2}+1}\) dx
Put x2 + 1 = t
⇒ 2x dx = dt ⇒ x dx = \(\frac{1}{2}\) dt
When x = 0, then t = 1,
When x = 1, then t = 12 + 1 = 2
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 1

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 2.
\(\int_{0}^{\pi / 2} \sqrt{\sin \phi} \cos ^{5} \phi d \phi\)
Answer:
Let I = \(\int_{0}^{\pi / 2} \sqrt{\sin \phi} \cos ^{5} \phi d \phi\)
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 2

Question 3.
\(\int_{0}^{1}\) sin-1 \(\left(\frac{2 x}{1+x^{2}}\right)\) dx
Answer:
Let I = \(\int_{0}^{1}\) sin-1 \(\left(\frac{2 x}{1+x^{2}}\right)\) dx
Putting x = tan θ ⇒ dx = sec2 θ dθ
When x = 1, then θ = \(\frac{\pi}{4}\)
When x = 0, then θ = 0
[Since, tan θ = 1 = tan \(\frac{\pi}{4}\) ∴ θ = \(\frac{\pi}{4}\)]
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 3
Now, ∫ θ sec2 θ - ∫ {\(\frac{d}{d \theta}\) (θ) ∫sec2 θ dθ} dθ
= θ tan θ - ∫1.tan θ dθ
= θ tan θ - (- log |cos θ|)
= θ tan θ + log |cos θ|
∴ ∫ θ sec2 θ dθ = θ tan θ + log |cos θ|
Putting the value of ∫θ sec2 θ dθ in (i), we get
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 4

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 4.
\(\int_{0}^{2} x\sqrt{x+2}\) dx
Answer:
Let I = \(\int_{0}^{2} x\sqrt{x+2}\) dx
Putting x + 2 = t2 ⇒ dx = 2t dt
When x = 0, then t = √2
When x = 2, then t2 = 2 + 2 = 4 ⇒ t = 2
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 5

Question 5.
\(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x}\) dx
Answer:
Let I = \(\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x}\) dx,
Putting, cos x = t ⇒ - sin x dx = dt,
⇒ sin x dx = - dt
When x = 0, then t = cos θ = 1,
When x = \(\frac{\pi}{2}\), then t = cos \(\frac{\pi}{2}\) = 0
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 6

Question 6.
\(\int_{0}^{2} \frac{d x}{x+4-x^{2}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 7
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 8

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 7.
\(\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 9

Question 8.
\(\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x}\) dx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 10

Question 9.
The value of the integral
\(\int_{1 / 3}^{1} \frac{\left(x-x^{3}\right)^{1 / 3}}{x^{4}}\) dx is:
(A) 6
(B) 0
(C) 3
(D) 4
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 11
Again putting cot θ = t ⇒ - cosec2 θ dθ = dt
When θ = sin-1 \(\frac{1}{3}\) ⇒ sin θ = \(\frac{1}{3}\),
Then cot θ = 2√2
∴ t = 2√2 = √8
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 12
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 13
Hence, (A) is the correct answer.

RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10

Question 10.
If f(x) = \(\int_{0}^{x}\) t sin t dt, then f'(x) is:
(A) cot x + x sin x
(B) x sin x
(C) x cos x
(D) sin x + x cos x
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10 14
= - x cos x + sin x
∴ f'(x) = - 1.cos x - x(- sin x) + cos x
= - cos x+ x sin x + cos x
= x sin x
Hence, (B) is the correct answer.

Bhagya
Last Updated on Nov. 3, 2023, 9:37 a.m.
Published Nov. 2, 2023