Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.1 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
sin 2x
Answer:
Let I = ∫ sin 2x dx
We know that
\(\frac{d}{d x}\) (cos 2x) = - 2 sin 2x
⇒ \(\frac{d}{d x}\) (-\(\frac{1}{2}\)cos 2x) = sin 2x
∴ ∫sin 2x dx = - \(\frac{1}{2}\) cos 2x + C
Question 2.
cos 3x
Answer:
Let I = cos 3x
We know that
\(\frac{d}{d x}\) (sin 3x) = 3 cos 3x
⇒ \(\frac{d}{d x}\) (-\(\frac{1}{3}\)sin 3x) = cos 3x
∴ ∫cos 3x dx = - \(\frac{1}{3}\) sin 3x + C
Question 3.
e2x
Answer:
Let I = ∫e2x dx
We know that
Question 4.
(ax + b)2
Answer:
Let I = ∫(ax + b)2 dx
We know that
Question 5.
sin 2x - 4e3x
Answer:
Let I = ∫ (sin 2x - 4e3x) dx
= ∫ sin 2x dx - 4 ∫e3x dx
Question 6.
∫ (4e3x + 1) dx
Answer:
∫ (4e3x + 1) dx = 4 ∫e3x dx + ∫ 1 dx
= 4 \(\frac{e^{3 x}}{3}\) + x + C
= \(\frac{4}{3}\) e3x + x + C
Question 7.
∫x2\(\left(1-\frac{1}{x^{2}}\right)\) dx
Answer:
Let I = ∫x2\(\left(1-\frac{1}{x^{2}}\right) \)dx
= ∫ (x2 - 1) dx
= ∫ x2 dx - ∫ 1 dx
= \(\frac{x^{3}}{3}\) - x + C
Question 8.
∫ (ax2 + bx + c) dx
Answer:
∫ (ax2 + bx + c) dx
= a ∫x2 dx + b ∫ x dx + c ∫ 1.dx
Question 9.
∫ (2x2 + ex) dx
Answer:
∫ (2x2 + ex) dx = 2 ∫ x2 dx + ∫ ex dx
= 2\(\frac{x^{2+1}}{2+1}\) + ex + C
= \(\frac{2}{3}\)x3 + ex + C
Question 10.
∫ \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}\) dx
Answer:
Question 11.
∫ \(\frac{x^{3}+5 x^{2}-4}{x^{2}}\) dx
Answer:
Question 12.
∫\(\frac{x^{3}+3 x+4}{\sqrt{x}}\) dx
Answer:
Question 13.
∫\(\frac{x^{3}-x^{2}+x-1}{x-1}\) dx
Answer:
Question 14.
∫ (1 - x) √x dx
Answer:
∫ (1 - x) √x dx = ∫(√x - x√x)dx
= ∫ (x1/2 - x.x1/2) dx
= ∫ x1/2 dx - ∫ x3/2 dx
Question 15.
∫ √x(3x2 + 2x + 3) dx
Answer:
Question 16.
∫ (2x - 3 cos x + ex) dx
Answer:
∫ (2x - 3 cos x + ex) dx
= 2 ∫x dx - 3 ∫ cos x dx + ∫ ex dx
= 2.\(\frac{x^{2}}{2}\) - 3 sin x + ex + C
= x2 - 3 sin x + ex + C
Question 17.
∫ (2x2 - 3 sin x + 5√x) dx
Answer:
∫ (2x2 - 3 sin x + 5√x) dx
= 2 ∫x2 dx - 3 ∫ sin x dx + 5 ∫x1/2 dx
Question 18.
∫ sec x (sec x + tan x) dx
Answer:
∫ sec x (sec x + tan x) dx
= ∫ sec2x dx + ∫sec x tan x dx
= tan x + sec x + C
Question 19.
∫ \(\frac{\sec ^{2} x}{{cosec}^{2} x}\)
Answer:
Let I = ∫\(\frac{\sec ^{2} x}{{cosec}^{2} x}\) dx = ∫\(\frac{\sin ^{2} x}{\cos ^{2} x}\) dx
= ∫tan2 dx
= ∫ (sec2 x - 1) dx
= ∫ sec2 x dx - ∫1. dx
= tan x - x + C
Question 20.
∫\(\frac{2-3 \sin x}{\cos ^{2} x}\) dx
Answer:
Let I = ∫\(\frac{2-3 \sin x}{\cos ^{2} x}\) dx
= ∫\(\frac{2}{\cos ^{2} x} dx - 3∫\frac{\sin x}{\cos ^{2} x}\) dx
= 2 ∫ sec2 x dx - 3 ∫ sec x tan x dx
= 2 tan x - 3 sec x + C
Question 21.
The antiderivative of (√x + \(\frac{1}{\sqrt{x}}\)) equals:
(A) \(\frac{1}{3}\)x1/3 + 2x1/2 + C
(B) \(\frac{2}{3}\)x2/3 + \(\frac{1}{2}\)x2 + C
(C) \(\frac{2}{3}\)x3/2 + 2x1/2 + C
(D) \(\frac{3}{2}\)x3/2 + \(\frac{1}{2}\)x1/2 + C
Answer:
Hence, (C) is the correct answer.
Question 22.
If \(\frac{d}{d x}\) f(x) = 4x3 - \(\frac{3}{x^{4}}\) such that f(2) = 0. Then f(x) is:
(A) \(x^{4}+\frac{1}{x^{3}}-\frac{129}{8}\)
(B) \(x^{3}+\frac{1}{x^{4}}+\frac{129}{8}\)
(C) \(x^{4}+\frac{1}{x^{3}}+\frac{129}{8}\)
(D) \(x^{3}+\frac{1}{x^{4}}-\frac{129}{8}\)
Answer: