RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.3

Find \(\frac{d y}{d x}\) in the following:

Question 1.
2x + 3y = sin x
Answer:
Given, 2x + 3y = sin x
Differentiating both sides w.r.t. x, we get
2.1 + 3\(\frac{d y}{d x}\) = cos x ⇒ 3\(\frac{d y}{d x}\) = cos x - 2
Thus, \(\frac{d y}{d x}\) = \(\frac{\cos x-2}{3}\)

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 2.
2x + 3y = sin y
Answer:
Given, 2x + 3y = sin y
Differentiating both sides w.r.t. x, we get
2.1 + 3\(\frac{d y}{d x}\) = cos y \(\frac{d y}{d x}\)
⇒ 2 = cos y \(\frac{d y}{d x}\) - 3\(\frac{d y}{d x}\) ⇒ 2 = (cos y - 3) \(\frac{d y}{d x}\)
Thus, \(\frac{d y}{d x}\) = \(\frac{2}{\cos y-3}\)

Question 3.
ax + by2 = cos y
Answer:
Given, ax + by2 = cos y
Differentiating both sides w.r.t. x, we get
a.1 = 2by\(\frac{d y}{d x}\) = - sin y \(\frac{d y}{d x}\)
⇒ (sin y + 2by) \(\frac{d y}{d x}\) = - a
Thus, \(\frac{d y}{d x}\) = \(\frac{-a}{\sin y+2 b y}\)

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 4.
xy + y2 = tan x + y
Answer:
Given xy + y2 = tan x + y
Differentiating both sides w.r.t. x, we get
x. \(\frac{d y}{d x}\) + 1.y + 2y \(\frac{d y}{d x}\) = sec2 x + \(\frac{d y}{d x}\)
RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 1

Question 5.
x2 + xy + y2 = 100
Answer:
Given, x2 + xy + y2 = 100
Differentiating both sides w.r.t. x, we get
2x + x. \(\frac{d y}{d x}\) + 1.y + 2y \(\frac{d y}{d x}\) = 0
⇒ (x + 2y) \(\frac{d y}{d x}\) = - y - 2x = - (y + 2x)
Thus, \(\frac{d y}{d x}\) = -\(\frac{(y+2 x)}{(x+2 y)}\)

Question 6.
x3 + x2y + xy2 + y3 = 81
Answer:
Given x3 + x2y + xy2 + y3 = 81
Differentiating both sides w.r.t. x, we get
3x2 + 2xy + x2\(\frac{d y}{d x}\) + 1.y2 + x.2y\(\frac{d y}{d x}\) + 3y2\(\frac{d y}{d x}\) = 0
⇒ 3x2 + 2xy + y2 + (x2 + 2xy + 3y2) \(\frac{d y}{d x}\) = 0
⇒ (x2 + 2xy + 3y2)\(\frac{d y}{d x}\) = - (3x2 + 2xy + y2)
Thus, \(\frac{d y}{d x}\) = - \(\frac{\left(3 x^{2}+2 x y+y^{2}\right)}{\left(x^{2}+2 x y+3 y^{2}\right)}\)

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 7.
sin2 y + cos xy = k
Answer:
Given, sin2 y + cos xy = k
Differentiating both sides w.r.t. x, we get
2 sin y cos y \(\frac{d y}{d x}\) + (- sin xy) (x \(\frac{d y}{d x}\) + 1.y) = 0
⇒ sin 2y \(\frac{d y}{d x}\) - x sin xy \(\frac{d y}{d x}\) - y sin xy = 0
[∵ 2 sin y cos y = sin2y]
⇒ (sin 2y - x sin xy)\(\frac{d y}{d x}\) = y sin xy
Thus, \(\frac{d y}{d x}\) = \(\frac{y \sin x y}{(\sin 2 y-x \sin x y)}\)

Question 8.
sin2 x + cos2 y = 1
Answer:
Given sin2 x + cos2 y = 1
Differentiating both sides w.r.t. x, we get
2 sin x cos x - 2 cos y sin y \(\frac{d y}{d x}\) = 0
⇒ sin 2x - sin 2y \(\frac{d y}{d x}\) = 0
⇒ - sin 2y \(\frac{d y}{d x}\)= - sin 2x
\(\frac{d y}{d x}\) = \(\frac{-\sin 2 x}{-\sin 2 y}=\frac{\sin 2 x}{\sin 2 y}\)
Thus, \(\frac{d y}{d x}\) = \(\frac{-\sin 2 x}{-\sin 2 y}=\frac{\sin 2 x}{\sin 2 y}\)

Question 9.
y = sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\)
Answer:
Given y = sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\)
Differentiating both sides w.r.t. x, we get
RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 2

Alternatively:
y = sin-1 \(\left(\frac{2 x}{1+x^{2}}\right)\)

let x = tan θ,
Then θ = tan-1 x
∴ y = sin-1 \(\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)\)
⇒ y = sin-1 (sin 2θ)
⇒ y = 2θ (∵ sin 2θ = \(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\))
⇒ y = 2 tan-1 x
Differentiating both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{2}{1+x^{2}}\)

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 10.
y = tan-1\(\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)\), - \(\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}\)
Answer:
Given y = tan-1\(\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)\)
Let x = tan θ then θ = tan-1 x
and y = tan-1\(\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right)\)
⇒ y = tan-1 (tan 3θ) = 3θ
⇒ y = 3 tan-1 x
Differentiating both sides w.r.t x, we get
\(\frac{d y}{d x}\)\(\frac{3}{1+x^{2}}\)

Question 11.
y = cos-1 \(\left(\frac{1-x^{2}}{1+x^{2}}\right)\), 0 < x < 1
Answer:
Given, y = cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\), 0 < x < 1
Let x = tan θ then θ = tan-1x
and y = cos-1\(\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\)
⇒ y = cos-1 (cos 2θ) = 2θ = 2 tan-1x
Differentiating both sides w.r.t x, we get
\(\frac{d y}{d x}\) = \(\frac{2}{1+x^{2}}\)

Question 12.
y = sin-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\), 0 < x < 1
Answer:
Given y = sin-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Let x = tan θ, then θ = tan-1 x
RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 3

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 13.
y = cos-1\(\left(\frac{2 x}{1+x^{2}}\right),\) - 1 < x < 1
Answer:
RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 4

Question 14.
y = sin-1 (2x\(\sqrt{1-x^{2}}\)), -\(\frac{1}{\sqrt{2}}\) < x < \(\frac{1}{\sqrt{2}}\)
Answer:
Given y = sin-1 (2x\(\sqrt{1-x^{2}}\))
Let x = sin θ, then θ = sin-1 x
and y = sin-1 (2 sin θ \(\sqrt{1-\sin ^{2} \theta}\))
⇒ y = sin-1 (2 sin θ cos θ)
⇒ y = sin-1 (sin 2θ) = 2θ = 2 sin-1 x
Differentiating both sides w.r.t x, we get
\(\frac{d y}{d x}\) = 2 \(\frac{d}{d x}\) (sin-1 x)
Thus, \(\frac{d}{d x}\) = \(\frac{2}{\sqrt{1-x^{2}}}\)

RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3

Question 15.
y = sec-1\(\left(\frac{1}{2 x^{2}-1}\right)\), 0 < x < \(\frac{1}{\sqrt{2}}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 5

Bhagya
Last Updated on Nov. 2, 2023, 9:25 a.m.
Published Nov. 1, 2023