RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 4 Determinants Miscellaneous Exercise

Question 1.
Prove that the determinant x \(\left|\begin{array}{ccc} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{array}\right|\) is independent of θ.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 1
= x(- x2 - 1) - sin θ (- x sin θ - cos θ) + cos θ (- sin θ + x cos θ)
= x(- x2 - 1) + x sin2 θ + sin θ cos θ - cos θ sin θ + x cos2 θ
= - x3 - x + x(sin2 θ + cos2 θ)
= - x3 - x + x × 1 = - x3
Clearly, ∆ is independent of θ.
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 2.
Without expanding the determinant, prove that
\(\left|\begin{array}{ccc} a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b \end{array}\right|\)=\(\left|\begin{array}{ccc} 1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3} \end{array}\right|\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 2

Question 3.
Evaluate
\(\left|\begin{array}{ccc} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{array}\right|\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 3

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 4.
If a, b and c are real numbers and
Δ = \(\left|\begin{array}{lll} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right|\) = 0
then show that either a + b + c = 0 and a = b = c.
Answer:
Given determinant is:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 4
⇒ 2(a + b + c) {(b - c) × (c - b) - (c - a) (b - a)} = 0
⇒ 2(a + b + c) {- (b - c)2 - (cb - ca - ab + a2)} = 0
⇒ 2(a + b + c) {- b2 - c2 + 2bc - bc + ca + ab - a2} = 0
⇒ 2(a + b + c) × {- a2 - b2 - c2 + bc + ca + ab} = 0
⇒ - 2(a + b + c) × {a2 + b2 + c2 - ab - bc - ca] = 0
⇒ -(a + b + c) {2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca] = 0
⇒ - (a + b + c) {(a2 + b2 - 2ab + b2 + c2 - 2ab + c2 + a2 - 2ac} = 0
⇒ - (a + b + c) × {(a - b)2 + {b - c)2 + (c - a)2} = 0
⇒ a + b + c = 0
or (a - b)2 + (b - c)22 + (c - a)2 = 0
⇒ a - b = 0, b - c = 0, c - a = 0
⇒ a = b, b = c, c = a
⇒ a = b = c
Hence a + b + c = 0
or a = b = c
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 5.
If a ≠ 0 then, solve
\(\left|\begin{array}{ccc} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{array}\right|\) = 0
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 5

Question 6.
Prove that
\(\left|\begin{array}{ccc} a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2} \end{array}\right|\) = 4a2b2c2
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 6
= 2a2b2c {(a + c) (1 - 0) - 1(a + b -b - c)}
= 2a2b2c{a + c - a - b + b + c}
= 2a2b2c(2c)
= 4a2b2c2
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 7.
If A-1 = \(\left[\begin{array}{rrr} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{rrr} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{array}\right]\) then find the value of (AB)-1.
Answer:
We have,
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 7
= 1(3 - 0) - 2(-1 - 0) - 2(2 - 0)
= 3 + 2 - 4 = 1
∴ |B| = 1 ≠ 0
Since, B is non-singular so B-1 exists.
If Bij is cofactor of bij in B, then
B11 = + [3 × 1 - (- 2) × 0] = 3
B12 = (- 1) (- 1) - 0 = 1
B13 = + [(- 1) × (- 2) - 0 × 3] = 2
B21 = (- 1) (2 - 4) = (- 1) (- 2) = 2
B22 = + [1 × 1 - 0 (- 2) = 1
B23 = (- 1) [1 × (- 2) - 0 × 2] = 2
B31 = + [2 × 0 - 3 × (- 2)] = 6
B32 = (- 1) [0 - (- 1) (- 2)] = 2
B33 = + [1 × 3 - (-1) × 2] = 3 + 2 = 5
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 8

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 8.
Let A = \(\left[\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{array}\right]\), then verify that
(i) (adj A)-1 = (adj) A-1
Answer:
Given, A = \(\left[\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{array}\right]\)
Determinant of matrix A,
|A| = \(\left|\begin{array}{rrr} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{array}\right|\)
= (15 - 1) + 2(- 10 - 1) + (- 2 - 3)
= 14 + 2(- 11) + (- 5)
= 14 - 22 - 5 = - 13
∴ | A | = - 13 ≠ 0
Since, matrix A is non-singular so A-1 exists.
If Aij is cofactor of aij in A, then
A11 = + [3 × 5 - 1 × 1] = 15 - 1 = 14
A12 = (- 1) [- 10 - 1] = 11
A13 = + [- 2 × 1 - 1 × 3] = - 2 - 3 = - 5
A21 = (- 1) [- 10 - 1] = (- 1) × (- 11) = 11
A22 = + [1 × 5 - 1 × 1] = 5 - 1 = 4
A23 = (- 1) [1 + 2] = (- 1) × 3 = - 3
A31 = + [- 2 × 1 - 3 × 1] = - 2 - 3 = - 5
A32 = (- 1) [1 + 2] = (- 1) (3) = - 3
A33 = + [1 × 3 - (- 2) × (- 2)] = 3 - 4 = - 1
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 9
= 14(- 4 - 9) - 11(- 11 - 15) - 5(- 33 + 20)
= 14(- 13) - 11(- 26) - 5 (-13)
= - 182 + 286 + 65 = 169
∴ |B| = 169 ≠ 0
Since, matrix B is non-singular so B-1 exists.
If Bij is cofactor of bij in B, then
B11 = + [4 × (-1) - (- 3) × (- 3)] = - 4 - 9 = -13
B12 = (- 1) (- 11 - 15)] = (- 1) (- 26) = 26
B13 = + [11 × (- 3) - (- 5) × 4] = - 33 + 20 = - 13
B21 = (- 1) [- 11 - 15)] = (- 1) (- 26) = 26
B22 = + [14 × (- 1) - (- 5) × (- 5)] = -14 - 25 = - 39
B23 = (- 1) (- 42 + 55) = (- 1) (13) = - 13
B31 = + [11 × (- 3) - 4 × (- 5)] = - 33 + 20 = - 13
B32 = (- 1) [- 42 + 55] = (- 1) (13) = - 13
B33 = + [14 × 4 - 11 × 11] = 56 - 121 = - 65
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 11
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 11
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 12

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

(ii) (A-1)-1 = A
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 13

Question 9.
Evaluate: \(\left|\begin{array}{ccc} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{array}\right|\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 14
= 2(x + y) {x × (- x) - (x - y) × (- y)}
= 2(x + y) {- x2 + xy - y2}
= - 2(x + y) (x2 - xy + y2)
= - 2(x3 + y3)

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 10.
\(\left|\begin{array}{ccc} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{array}\right|\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 15

Using properties of determinants in Question 11 to 15. Prove that

Question 11.
\(\left|\begin{array}{ccc} \alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta \end{array}\right|\) = (β - γ) (γ - α) (α - β) (α + β + γ)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 16
Applying R2 → R2 - R1 and R3 → R3 - R1
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 17
Taking common (β - α) and (γ - α) from R2 and R3 respectively
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 18
⇒ ∆ = (α + β + γ) (β - α) (γ - α) × {(β - α) (- 1) - (γ + α) (- 1)}
⇒ ∆ = (α + β + γ) (β - α) (γ - α) × (- β - α + γ + α)
⇒ ∆ = (α + β + γ) (β - α) (γ - α) (- β + γ)
⇒ ∆ = (α + β + γ) (α - β) (γ - α) (γ - β) [∵ (β - α) = - (α - β), (γ - β) = - (β - γ)]
⇒ ∆ = (α + β + γ) (α - β) (β - γ) (γ - α)
= R.H.S
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 12.
\(\left|\begin{array}{ccc} x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3} \end{array}\right|\) = (1 + pxyz) (x - y) (y - z) (z - x), where p is any scalar.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 19
Now, in ∆1, applying R2 → R2 - R1 and R3 → R3 - R1
1 = \(\left|\begin{array}{ccc} x & x^{2} & 1 \\ y-x & y^{2}-x^{2} & 0 \\ z-x & z^{2}-x^{2} & 0 \end{array}\right|\)
Taking factor (y - z) and (z - x) common from R2 and R3 respectively
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 20
⇒ ∆1 = (y - x) (z - x) {1(z + x) - 1 × (y + x)}
⇒ ∆1 = (y - x) (z - x) {z + x - y - x}
⇒ ∆1 = (y - x) (z - x) (z - y)
⇒ ∆1 = (x - y) (y - z) (z - x)
[∵ (y - x) = - (x - y) and (z - y) = - (y - z)]
∴ ∆1 = (x - y) (y - z) (z - x) ...... (2)
Now ∆2 = \(\left|\begin{array}{ccc} x & x^{2} & p x^{3} \\ y & y^{2} & p y^{3} \\ z & z^{2} & p z^{3} \end{array}\right|\)
Taking x, y, z common from R1, R2 and R3 respectively and p from C3
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 21
Again, taking common (y - x) and (z - x) from R2 and R3 respectively,
2 = pxyz(y - x) (z - x) \(\left|\begin{array}{ccc} 1 & x & x^{2} \\ 0 & 1 & y+x \\ 0 & 1 & z+x \end{array}\right|\)
Now, expanding ∆2 along C1
⇒ ∆2 = pxyz(y - x) (z - x) × \(\left\{1\left|\begin{array}{ll} 1 & y+x \\ 1 & z+x \end{array}\right|-0+0\right\}\)
⇒ ∆2 = pxyz(y - x) (z - x) × {1 × (z + x) - 1 × (y + x)}
⇒ ∆2 = pxyz{y - x) (z - x) (z + x - y - x)
⇒ ∆2 = pxyz(y - x) (z - x) (z - y)
⇒ ∆2 = pxyz(x - y) (y - z) (z - x)
[∵ (y - x) = -(x - y) and (z - y) = - (y - z)]
∴ ∆2 = pxyz(x - y) (y - z) (z - x) ....... (3)
Now, substituting the values of ∆1 and ∆2 in equation (1), we get
∆ = (x - y) (y - z) (z - x) + pxyz(x - y) (y - z) (z - x)
⇒ ∆ = (x - y) (y - z) (z - x) (1 + pxyz)
∴ ∆ = (1 + pxyz) (x - y) (y - z) (z - x)
= R.H.S.
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 13.
\(\left|\begin{array}{ccc} 3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c \end{array}\right|\) = 3(a + b + c) (ab + bc + ca)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 22
⇒ ∆ = (a + b + c) {(a + 2b) (2c + a) - (- c + a) (- b + a)}
⇒ ∆ = (a + b + c) {2ca + a2 + 4bc + 2ba - (bc - ac- ab + a2)}
⇒ ∆ = (a + b + c) {(2ca + a2 + 4bc - bc + ac + ab - a2 + 2ab}
⇒ ∆ = (a + b + c) {3ab + 3bc + 3ca}
⇒ ∆ = (a + b + c) × 3 (ab + bc + ca)
⇒ ∆ = 3 (a + b + c) (ab + bc + ca)
∴ ∆ = 3 (a + b + c) (ab + bc + a)

Question 14.
\(\left|\begin{array}{ccc} 1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q \end{array}\right|\) = 1
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 23

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 15.
\(\left|\begin{array}{ccc} \sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta) \end{array}\right|\) = 0
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 24
Thus, ∆ = 0 (all elements of C3 are zero)
Hence Proved.

Question 16.
Solve the following equations :
\(\frac{2}{x}+\frac{3}{y}+\frac{10}{z}\) = 4
\(\frac{4}{x}-\frac{6}{y}+\frac{5}{z}\) = 1
\(\frac{6}{x}+\frac{9}{y}-\frac{20}{z}\) = 2
Answer:
Given system of equation is
\(\frac{2}{x}+\frac{3}{y}+\frac{10}{z}\) = 4
\(\frac{4}{x}-\frac{6}{y}+\frac{5}{z}\) = 1
\(\frac{6}{x}+\frac{9}{y}-\frac{20}{z}\) = 2
Let u = \(\frac{1}{x}\), v = \(\frac{1}{y}\) and w = \(\frac{1}{z}\) then
2u + 3v + 10 w = 4
4u - 6v + 5w = 1
6u + 9v - 20w = 2
Writing in matrix form
AX = B ....... (1)
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 25
⇒ |A| = 2 × 75 - 3 × (- 110) + 10 x× 72
⇒ |A| = 150 + 330 + 720 = 1200
∴ |A| = 1200 ≠ 0
Since, matrix A is non-singular so A-1 exists.
If Aij is cofactor of aij in A, then
A11 = + [- 6 × (- 20) - 9 × 5] = 120 - 45 = 75
A12 = (- 1) [- 80 - 30] = (- 1) (- 110) = 110
A13 = + [4 × 9 - 6 × (- 6)] = 36 + 36 = 72
A21 = (- 1) (- 60 - 90) = (- 1) (- 150) = 150
A22 = + [- 40 - 60] = - 100
A23 = (- 1) [18 - 18] = 0
A31 = + [3 × 5 - (- 6) × 10] = 15 + 60 = 75
A32 = (- 1) (10 - 40) = (-1) (- 30) = 30
A33 = + [2 × (- 6) - 4 × 3] = - 12 - 12 = - 24
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 26

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 17.
If a,b,c are in A.P., then the determinant \(\left|\begin{array}{lll} x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c \end{array}\right|\) is:
(A) 0
(B) 1
(C) x
(D) 2x
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 27
All element of R2 are zero.
Thus, option (A) is correct.

Question 18.
If x, y, z are non-zero real numbers, then the inverse of matrix A = \(\left[\begin{array}{lll} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right]\) is:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 28
Answer:
Let A = \(\left[\begin{array}{ccc} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right]\)
∴ Determinant of matrix A is
|A| = x\(\left|\begin{array}{ll} y & 0 \\ 0 & z \end{array}\right|\) - 0 + 0
= x(yz - 0) = xyz
∴ |A| = xyz ≠ 0
If Aij is cofactor of aij in A, then
A11 = + [yz - 0] = yz
A12 = (- 1) (0 × z - 0 × 0) = 0
A13 = + [0 × 0 - 0 × y = 0]
A21 = (- 1) (0 × z - 0 × 0) = 0
A22 = + [xz - 0 × 0] = xz
A23 = (- 1) (x × 0 - 0 × 0) = 0
A31 = + [0 × 0 - 0 × y] = 0
A32 = (- 1) [x × 0 - 0 × 0] = 0
A33 = + [x × y - 0 × 0] = xy
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 29
Thus, option (A) is correct.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise

Question 19.
If A = \(\left[\begin{array}{ccc} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{array}\right]\), where 0 ≤ θ ≤ 2π, then
(A) Det (A) = 0
(B) Det (A) ∈ (2, ∞)
(C) Det (A) ∈ (2, 4)
(D) Det (A) ∈ [2, 4]
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Miscellaneous Exercise 30
⇒ (1 + sin2θ) + (sin2θ - sin2θ) + (sin2θ + 1)
⇒ |A| = 1 + sin2θ + sin2θ + 1
⇒ |A| = 2(1 + sin2θ)
Now θ = 0, |A| = 2
θ = \(\frac{\pi}{2}\),
|A| = 2(1 + 1) = 4
∴ det (A) ∈ [2, 4]
Thus, option (D) is correct.

Bhagya
Last Updated on Nov. 2, 2023, 9:25 a.m.
Published Nov. 1, 2023