RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 4 Determinants Ex 4.5

Question 1.
\(\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\)
Determinant of matrix A
|A| = \(\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\) = (1 × 4) - (3 × 2) = 4 - 6 = - 2
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1 |4| = 4
A12 = (- 1)1 + 2 |3| = - 3
A21 = (- 1)2 + 1 |2| = - 2
A22 = (- 1)2 + 2 |1| = 1
Matrix formed by the cofactors of |A| is
B (say) = \(\left[\begin{array}{cc} 4 & -3 \\ -2 & 1 \end{array}\right]\)
Now, adj A = Transpose of B = \(\left[\begin{array}{cc} 4 & -3 \\ -2 & 1 \end{array}\right]\)

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 2.
\(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{array}\right]\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 1
(3 × 1) - (0 × 5) + 1{2 × 1 - (- 2) × 5} + 2{2 × 0 - (- 2) × 3)
= 3 + 0 + 2 + 10 + 2(0 + 6)
= 3 + 2 + 10 + 12 = 27 ≠ 0
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1 [(3 × 1) - (0 × 5)] = 3
A12 = (- 1)1 + 2 [(- 1) (2 + 10)0] = - 12
A13 = (- 1)1 + 3[2 × 0 - (- 2) × 3] = 0 + 6 = 6
A21 = (- 1)2 + 1 1 = [(- 1) (- 1)] = 1
A22 = (- 1)2 + 2 = [1 + 4] 5
A23 = (- 1)2 + 3 = [(- 1) (- 2)] = 2
A31 = (- 1)3 + 1 = [- 5 - 6] = - 11
A32 = (- 1)3 + 2 = [(- 1) (5 - 4)] = - 1
A33 = (- 1) 3 + 3 = [1 × 3 - 2(- 1)] = 3 + 2 = 5
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 2

Verify A(adj A) = (adj A) = |A| I in question 3 and 4:

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 3.
\(\left[\begin{array}{rr} 2 & 3 \\ -4 & -6 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rr} 2 & 3 \\ -4 & -6 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left|\begin{array}{rr} 2 & 3 \\ -4 & -6 \end{array}\right|\)
= 2 × (- 6) - (- 4) × 3 = - 12 + 12 = 0
If Aij is cofactor of aij in A then,
A11 = (- 1)1 + 1 (- 6) = - 6
A12 = (- 1)1 + 2 (- 4) = 4
A21 = (- 1)2 + 1 (3) = - 3
A22 = (- 1)2 + 2 (2) = 2
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 3

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 4.
\(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right]\)
Determinant of A is
|A| = \(\left|\begin{array}{rrr} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right|\)
Expanding along C2, we get
|A| = {3 × 3 - 1 × (- 2)} + 0 + 0
∴ |A| = (9 + 2) = 11
A11 = (- 1)1 + 1 [(0 × 3 - 0 × (- 2)] = 3
A12 = (- 1)1 + 2 [(3 × 3 - 1) × (- 2 )] = (- 1) (9 + 2) = - 11
A13 = (- 1)1 + 3[(3 × 0 - 1 × 0)] = 0
A21 = (- 1)2 + 1 1 = [(- 1 × 3 - 0 × 2)] = (- 1) (- 3) = 3
A22 = (- 1)2 + 2 = [1 × 3 - 1 × 2] = 3 - 2 = 1
A23 = (- 1)2 + 3 = [1 × 0 - 1 × (- 1)] = - 1(0 + 1) = - 1
A31 = (- 1)3 + 1 = {- 1 × (- 2) - 0 × 2} = 2
A32 = (- 1)3 + 2 = {1 × (- 2) - 3 × 2} = (- 1) (- 2 - 6) = (- 1) (- 8) = 8
A33 = (- 1) 3 + 3 = [1 × 0 - 3 × (- 1)] = 8
Matrix formed by the cofactors of |A| is:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 4
= |A| (∵ |A| = 11)
∴ (adj A)A = |A|I ........ (2)
From (1) and (2), we get
A(adj A) = (adj A)A = |A|I
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Find the inverse of each of the matrices (if it exists) given in questions 5 to 11:

Question 5.
\(\left[\begin{array}{rr} 2 & -2 \\ 4 & 3 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rr} 2 & -2 \\ 4 & 3 \end{array}\right]\)
Determinant of A is:
|A| = \(\left|\begin{array}{rr} 2 & -2 \\ 4 & 3 \end{array}\right|\)
= 2 × 3 - 4 × (- 2) = 6 + 8 = 14 ≠ 0
Then, matrix A is non-singular hence A-1 exists.
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1 |3| = 3
A12 = (- 1)1 + 2 = - 4
A21 = (- 1)2 + 1 |- 2| = - (- 2) = 2
A22 = (- 1)2 + 2 |2| = 2
Matrix formed by the cofactor of A is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 5

Question 6.
\(\left[\begin{array}{ll} -1 & 5 \\ -3 & 2 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{ll} -1 & 5 \\ -3 & 2 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left|\begin{array}{ll} -1 & 5 \\ -3 & 2 \end{array}\right|\)
= - 1 × 2 - (- 3) × 5 = - 2 + 15 = 13 ≠ 0
Then matrix A is non-singular hence A-1 exists.
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1 (2) = 2
A12 = (- 1)1 + 2 (- 3) = - (- 3) = 3
A21 = ( - 1)2 + 1 (5) = - 5
A22 = (- 1)2 + 2 (- 1) = - 1
Matrix formed by the cofactor of A is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 6

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 7.
\(\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{array}\right]\)
Expanding along C1
= 1(2 × 5 - 0 × 4) = 10 ≠ 0
Thus, matrix A is non-singuiar, i.e., A -1 exists.
If Aij is cofactor of in aij in A, then
A11 = (- 1)1 + 1[2 × 5 - 0 × 4] = 10
A12 = (- 1)1 + 2[(0 × 5 - 0 × 4)] = 0
A13 = (- 1)1 + 3[0 × 0 - 0 × 2)] = 0
A21 = (- 1)2 + 1[(- 1) (2 × 5 - 0 × 3)] = - 10
A22 = (- 1)2 + 2[(1 × 5 - 0 × 3)] = 5
A23 = (- 1)2 + 3[(- 1) (1 × 0 - 0 × 2)] = 0
A31 = (- 1)3 + 1[2 × 4 - 2 × 3 = 8 - 6] = 2
A32 = (- 1)3 + 2[(- 1) (1 × 4 - 0 × 3)] = - 4
A33 = (- 1)3 + 3[(1 × 2 - 0 × 2)] = 2
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 7

Question 8.
\(\left[\begin{array}{rrr} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rrr} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{array}\right]\)
= 1{3 × (- 1) - 2 × 0} - 0 + 0 = - 3 ≠ 0
So, matrix A is non-singular, ie., A-1 exists.
If Aij is cofactor of aij in A, then
A11 = [3 × (- 1) - 2 × 0] = - 3
A12 = - [3 × (- 1) - 5 × 0] = - 1 (- 3) = 3
A13 = + [3 × 2 - 5 × 3] = 6 - 15 = - 9
A21 = - [0 × (- 1) - 2 × 0] = 0
A22 = +[1 × (- 1) - 5 × 0] = - 1
A23 = - [(1 × 2 - 5 × 0)] = - 2
A31 = +[0 × 0 - 3 × 0] = 0
A32 = - [(1 × 0 - 3 × 0)] = 0
A33 = +[1 × 3 - 3 × 0] = 3
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 8

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 9.
\(\left[\begin{array}{rrr} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rrr} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left[\begin{array}{rrr} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{array}\right]\)
= 2(- 1 × 1 - 2 × 0) - 1(4 × 1 - (- 7) × 0) + 3{4 × 2 - (- 7) × (- 1)}
= - 2 - 4 + 3(8 - 7) = - 2 - 4 + 3 = - 3 ≠ 0
So, matrix A is non-singular, i.e., A-1 exists.
If Aij is cofactor of aij in A, then
A11 = + [- (1 × 1) - (2 × 0)] = - 1
A12 = - [4 × 1 - (- 7) × 0] = - 4
A13 = +[4 × 2 - (- 7) × (- 1)] = 8 - 7 = 1
A21 = - [(1 × 1 - 2 × 3)] = (- 1) (1 - 6) = 5
A22 = +[2 × 1 - (- 7) × 3] = 2 + 21 = 23
A23 = - [2 × 2 - (- 7) × 1] = (- 1) (4 + 7) = - 11
A31 = + [1 × 0 - (- 1) × 3] = 3
A32 = - [(2 × 0 - 4 × 3)] = (- 1) (- 12) = 12
A33 = + [(2 × (- 1) - 4 × 1] = - 2 - 4 = - 6
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 9

Question 10.
\(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\)
= 1{2 × 4 - (- 2) × (- 3)} + 1{0 × 4 - 3 × (- 3)} + 2{0 × (- 2) - 3 × 2}
= (8 - 6) + (0 + 9) + 2(- 6)
= 2 + 9 - 12 = - 1 ≠ 0
So, matrix A is non-singular, i.e., A-1 exists.
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1[2 × 4 - (- 2) × (- 3)] = 8 - 6 = 2
A12 = (- 1)1 + 2 [0 × 4 - 3 × (- 3)] = - 1(+ 9) = - 9
A13 = (- 1)1 + 3 [0 × (- 2) - 3 × 2] = - 6
A21 = (- 1)2 + 1 [- 1 × 4 - (- 2) × 2] = (- 1) (- 4 + 4) = 0
A22 = (- 1)2 + 2 [1 × 4 - 3 × 2] = 4 - 6 = - 2
A23 = (- 1)2 + 3 [1 × (- 2) - 3 × (- 1)] = (- 1) (- 2 + 3) = - 1
A31 = (- 1)3 + 1 [(- 1) × (- 3) - 2 × 2] = 3 - 4 = - 1
A32 = (- 1)3 + 2 [1 × (- 3) - 0 × 2] = (- 1) (- 3) = 3
A33 = (- 1)3 + 3 [1 × 2 - 0 × (- 1)] = 2
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 10

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 11.
\(\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{array}\right|\)
= 1{cos α × (- cos α) - sin α (sin α)} - 0 + 0
= - cos2 α - sin2 a = - (cos2 α + sin2 α)
∴ | A | = - 1 ≠ 0
So, matrix A is non-singular, i.e., A-1 exists.
If Aij is cofactor of aij in A, then
A11 = +[cos α (- cos α - sin α (sin α)] = - cos2 α - sin2 α = - (cos2 α + sin2 α) = - 1
A12 = - {0 × (- cos α) - 0 × (sin α)} = 0
A13 = + [0 × sin α - 0 × cos α] = 0
A21 - [0 × (- cos α) - 0 × sin α] = 0
A22 = + [1 × (- cos α) - 0 × 0] = - cos α
A23 = - [(1 × sin α - 0 × 0)] = - sin α
A31 = + [0 × sin α - cos α × 0] = 0
A32 = - [(1 × sin α - 0 × 0)] = - sin α
A33 = + [1 × cos α - 0 × 0] = cos α
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 11

Question 12.
If A = \(\left[\begin{array}{ll} 3 & 7 \\ 2 & 5 \end{array}\right]\) and B = \(\left[\begin{array}{ll} 6 & 8 \\ 7 & 9 \end{array}\right]\), then verify that: (AB)-1 = B-1A-1
Answer:
Let A = \(\left[\begin{array}{ll} 3 & 7 \\ 2 & 5 \end{array}\right]\)
Determinant of matrix A is
|A| = \(\left|\begin{array}{ll} 3 & 7 \\ 2 & 5 \end{array}\right|\)
= 3 × 5 - 2 × 7 = 15 - 14 = 1 ≠ 0
So, matrix A is non-singular, i.e., A-1 exists.
If Aij is cofactor of aij in A, then
A11 = (- 1)1 + 1 (5) = 5
A12 = (- 1)1 + 2 (2) = - 2
A21 = (- 1)2 + 1 (7) = - 7
A22 = (- 1)2 + 2 (3) = 3
Matrix formed by the cofactors of |A| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 12
Determinant of matrix B is
|B| = \(\left|\begin{array}{ll} 6 & 8 \\ 7 & 9 \end{array}\right|\) = 6 × 9 - 7 × 8 = - 2 ≠ 0
∴ Matrix B is non-singular so B-1 exists.
If Bij is cofactor of bij in B, then
B11 = (- 1)1 + 1 (9) = 9
B12 = (- 1)1 + 2 (7) = - 7
B21 = (- 1)2 + 1 (8) = - 8
B22 = (- 1)2 + 2 (6) = 6
Matrix formed by the cofactor of |B| is
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 13

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 13.
If A = \(\left[\begin{array}{rr} 3 & 1 \\ -1 & 2 \end{array}\right]\), show that A2 - 5A + 7I = 0. Hence, find A-1.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 14
∴ A2 - 5A + 7I = 0
⇒ A2 - 5A = - 7I
⇒ AA - 5A = - &I
Pre-multiplying both sides by A-1
(A-1A)A - 5A-1A = - 7A-1I
⇒ IA - 5I = - 7A-1 (∵ A-1A = I, A-1I = A-1)
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 15

Question 14.
For the matrix A = \(\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right],\) find the numbers a and b such that A2 + aA + bI = 0.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 16
⇒ 11 + 3a + b = 0 ........ (1)
8 + 2a = 0 .......... (2)
4 + a = 0 ............ (3)
3 + a + b = 0 .......... (4)
Now, from equation (3)
4 + a = 0
⇒ a = - 4
Putting a = - 4 in 3 + a + b = 0
3 - 4 + b = 0
⇒ - 1 + b = 0 ⇒ b = 1
Thus a = - 4, b = 1
By a = - 4, b = 1 solving 11 + 3a + b = 0 and 8 + 2a = 0.
11 + 3 × (- 4) + 1 = 11 - 12 + 1 = 0
And 8 + 2 × (- 4) = 8 - 8 = 0
Thus, a and b satisfies 11 + 3a + b = 0 and 8 + 2a = 0.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 15.
For the matrix A = \(\left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{array}\right]\), show that A3 - 6A2 + 5A + 11I = 0. Hence, find A-1.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 17
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 18
Thus, A3 - 6A2 + 5A + 11I = 0
Multiplying equation A3 - 6A2 + 5A + 11I = 0 by A-1
(A-1A)A2 - 6(AA-1)A + 5(A-1A) + 11(A-1I) = A-1 = 0
⇒ IA2 - 6IA + 5I + 11A-1 = 0
[∵ A-1 A = I, A-1I = A-1, A-10 = 0]
⇒ A2 - 6A + 5I + 11A-1 = 0, (∵ IA = A)
⇒ 11A-1 = - A2 + 6A - 5I
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 19

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 16.
If A = \(\left[\begin{array}{rrr} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]\), verify that A3 - 6A2 + 9A - 4I = 0 and hence find A-1.
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 20
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 21
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 22

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5

Question 17.
If A be a non-singular square matrix of order 3 × 3, then | adj A | is equal to:
(A) | A |
(B) | A |2
(C) | A |3
(D) 3| A |
Answer:
Given, A be a square matrix of order n × n, then
| adj A |=| A |n - 1
Here n = 3
∴ |adjA | = | A |3 - 1 = | A |2
Thus, option (B) is correct.

Question 18.
If A be an invertible matrix of order 2, then det (A-1) is equal to:
(A) det
(B) \(\frac{1}{{det}(A)}\)
(C) 1
(D) 0
Answer:
Since, A is invertible matrix so its determinant value will not be zero, i.e.,
|A| ≠ 0
∴ AA-1 = 1
⇒ |AA-1| = | I | = 1
⇒ |A| |A-1| = 1 (∵ |AB| = |A| |B|)
⇒ |A-1| = \(\frac{1}{|A|}\)
⇒ det(A-1) = \(\frac{1}{{det}(A)}\)
Thus, option (B) is correct.

Bhagya
Last Updated on Nov. 2, 2023, 9:25 a.m.
Published Nov. 1, 2023