Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
(i) \(\left|\begin{array}{rr} 2 & -4 \\ 0 & 3 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rr} 2 & -4 \\ 0 & 3 \end{array}\right|\)
Let Δ = \(\left|\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|=\left|\begin{array}{rr} 2 & -4 \\ 0 & 3 \end{array}\right|\)
Minor of 2(a11) M11 = 3,
Cofactor of 2(a11) A11 = (- 1)1 + 1 M11 = 1 × 3 = 3
Minor of (- 4) a12 M12 = 0
Cofactor of (- 4) (a12) A12 = (- 1)1 + 2 M12 = (- 1) × 0 = 0
Minor of 0(a21) M21 = - 4
Cofactor of 0(a21) A21 = (- 1)2 + 1 M21 = (- 1) (- 4) = 4
Minor of 3(a22) = 2
Cofactor of 3(a22) A22 = (- 1)2 + 2 M22 = (- 1)4 a = a
Question 2.
(i) \(\left|\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right|\)
Answer:
Let Δ = \(\left|\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right|\)
(ii) \(\left|\begin{array}{rrr} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{array}\right|\)
Answer:
Let Δ = \(\left|\begin{array}{rrr} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{array}\right|\)
Question 3.
Using cofactors of elements of second row, evaluate Δ = \(\left|\begin{array}{lll} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{array}\right|\)
Answer:
Given, Δ = \(\left|\begin{array}{lll} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{array}\right|\)
Expanding along R2
Δ = - 2(3 × 3 - 2 × 8) + 0 (5 × 3 - 8 × 1) - 1 (5 × 2 - 3 × 1)
= - 2(9 - 16) + 0 - 1 (10 - 3)
= - 2 (- 7) - 1 (7)
= 14 - 7 = 7
Question 4.
Using cofactors of elements of third column, evaluate: Δ = \(\left|\begin{array}{lll} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{array}\right|\)
Answer:
Given, Δ = \(\left|\begin{array}{lll} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{array}\right|\)
Expanding along third column, we get
Δ = yz × (z - y) - (z - x) + xy(y - x)
= yz2 - y2z - z2x + zx2 + xy2 - x2y
= - (y2z - yz2) + x(y2 - z2) - x2(y - z)
= - yz(y - z) + x(y - z) (y + z) - x2(y - z)
= (y - z) {- yz + xy + xz - x2}
= (y - z) {xz - x2 - yz + xy}
= (y - z) {x(z - x) - y(z - x)}
= (y - z) {(z - x) (x - y)}
= (x - y) (y - z) (z - x)
Question 5.
If Δ = \(\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|\) and Aij is cofactor of aij then value of Δ is given by:
(A) a11A31 + a12A32 + a13A33
(B) a11A11 + a12A21 + a13A31
(C) a21A11 + a22A12 + a23A13
(D) a11A11 + a21A21 + a31A31
Answer:
Value of determinant = Sum of elements of any row or column and product of their corresponding cofactors
Element of first column C1 (a11, a21, a31)
Cofactor of a11 = A11
Cofactor of a21 = A21
Cofactor of a31 = A31
∴ Δ = a11A11 + aA21A21 + a31A31
Thus, option (D) is correct.