Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
\(\left|\begin{array}{rr} 2 & 4 \\ -5 & -1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rr} 2 & 4 \\ -5 & -1 \end{array}\right|\)
= 2 × (- 1) - (- 5) × 4
= - 2 + 20 = 18
Question 2.
(i) \(\left|\begin{array}{rr} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right|\)
Answer:
\(\left|\begin{array}{rr} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right|\)
= cos2θ - (- sin θ) sin θ
= cos2θ + sin2θ = 1
(ii) \(\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|\)
= (x2 - x + 1) (x + 1) - (x + 1) (x - 1)
= x3 + 1 - x2 + 1 = x3 - x2 + 2
Question 3.
If A = \(\left[\begin{array}{ll} 1 & 2 \\ 4 & 2 \end{array}\right]\), then show that: |2A| = 4 |A|
Answer:
= 4(2 - 8) = 4 × (- 6) = - 24 ....... (2)
Form (1) and (2), we get
|2A| = 4|A|
Question 4.
If A = \(\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{array}\right]\), then show that: |3A| = 27|A|
Answer:
Expanding along R3, we get
|3A| = 0 - 0 + 12(3 × 3 - 0 × 0) = 108
∴ |3A| = 108
∴ |3A| = 27 × 4 = 27 |A|
Thus, |3A| = 27 |A|
Hence Proved.
Question 5.
Evaluate the determinants:
(i) \(\left|\begin{array}{rrr} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Answer:
Let |A| = \(\left|\begin{array}{rrr} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Expanding along R2, we get
⇒ |A| = 0 + 0 + 1{3 × (- 5) - (- 1) × 3}
Thus, |A| = 1(- 15 + 3) = - 12
(ii) \(\left|\begin{array}{rrr} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rrr} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{array}\right|\)
Expanding along R1, we get
|A| = 3(1 × 1 - (3) × (- 2)) + 4(1 × 1 - 2 × (- 2)) + 5(1 × 3 - 2 × 1)
= 3(1 + 6) + 4(1 + 4) + 5(3 - 2)
= (3 × 7) + (4 × 5) + (5 × 1) = 46
(iii) \(\left|\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{array}\right|\)
Answer:
Let |A| = \(\left|\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{array}\right|\)
Expanding along R1, we get
A = 0 - 1(- 1 × 0 - (- 2) × (- 3)) + 2(- 1 × 3 - (- 2) × 0)
= - 1(0 - 6) + 2(- 3 - 0) = 6 - 6 = 0
(iv) \(\left|\begin{array}{rrr} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rrr} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Expanding along R1, we get
|A| = 0 + 2(2 × 0 - 3 × (- 2)) + 1(2 × (- 5)- 3 × (- 1))
= 2(0 + 6) + 1(- 10 + 3)
= 2 × 6 + 1 × (- 7)
= 12 - 7 = 5
Question 6.
If A = \(\left[\begin{array}{rrr} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{array}\right]\), then find |A|.
Answer:
Let |A| = \(\left[\begin{array}{rrr} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{array}\right]\)
Expanding along R1, we get
|A| = 1(1 × (- 9) - 4 × (- 3)) - 1(2 × (- 9) - 5 × (- 3)) - 2(2 × 4 - 5 × 1)
= |A| = 1( - 9 + 12) - 1(- 18 + 15) - 2(8 - 5)
= (1 × 3) - (1 × (- 3) - (2 × 3)
= 3 + 3 - 6 = 6 - 6 = 0
Thus, |A| = 0
Question 7.
Find the value of x, if
(i) \(\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{rr} 2 x & 4 \\ 6 & x \end{array}\right|\)
Answer:
Given, \(\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{rr} 2 x & 4 \\ 6 & x \end{array}\right|\)
⇒ (2 × 1) - (5 × 4) = (2x × x) - (6 × 4)
⇒ 2 - 20 = 2x2 - 24 ⇒ - 18 = 2x2 - 24
⇒ 2x2 = 24 - 18
⇒ 2x2 = 6
⇒ x2 = 3
∴ x = ± √3
(ii) \(\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right|\)
Answer:
\(\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right|\)
⇒ (2 × 5) - (4 × 3) = (x × 5) - (2x × 3)
⇒ 10 - 12 = 5x - 6x
⇒ - 2 = - x ⇒ x = 2
Question 8.
If \(\left|\begin{array}{cc} x & 2 \\ 18 & x \end{array}\right|=\left|\begin{array}{cc} 6 & 2 \\ 18 & 6 \end{array}\right|\), then x is equal to:
(A) 6
(B) ± 6
(C) - 6
(D) 0
Answer:
Given, \(\left|\begin{array}{cc} x & 2 \\ 18 & x \end{array}\right|=\left|\begin{array}{cc} 6 & 2 \\ 18 & 6 \end{array}\right|\)
⇒ (x × x) - (18 × 2) = (6 × 6) - (18 × 2)
⇒ x2 - 36 = 36 - 36 ⇒ x2 - 36 = 0
⇒ x2 = 36 ⇒ x = √36 ⇒ x = ±6
Thus, option (B) is correct.