RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 4 Determinants Ex 4.1

Question 1.
\(\left|\begin{array}{rr} 2 & 4 \\ -5 & -1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rr} 2 & 4 \\ -5 & -1 \end{array}\right|\)
= 2 × (- 1) - (- 5) × 4
= - 2 + 20 = 18

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Question 2.
(i) \(\left|\begin{array}{rr} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right|\)
Answer:
\(\left|\begin{array}{rr} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right|\)
= cos2θ - (- sin θ) sin θ
= cos2θ + sin2θ = 1

(ii) \(\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|\)
= (x2 - x + 1) (x + 1) - (x + 1) (x - 1)
= x3 + 1 - x2 + 1 = x3 - x2 + 2

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Question 3.
If A = \(\left[\begin{array}{ll} 1 & 2 \\ 4 & 2 \end{array}\right]\), then show that: |2A| = 4 |A|
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 1
= 4(2 - 8) = 4 × (- 6) = - 24 ....... (2)
Form (1) and (2), we get
|2A| = 4|A|

Question 4.
If A = \(\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{array}\right]\), then show that: |3A| = 27|A|
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 2
Expanding along R3, we get
|3A| = 0 - 0 + 12(3 × 3 - 0 × 0) = 108
∴ |3A| = 108
∴ |3A| = 27 × 4 = 27 |A|
Thus, |3A| = 27 |A|
Hence Proved.

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Question 5.
Evaluate the determinants:
(i) \(\left|\begin{array}{rrr} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Answer:
Let |A| = \(\left|\begin{array}{rrr} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Expanding along R2, we get
⇒ |A| = 0 + 0 + 1{3 × (- 5) - (- 1) × 3}
Thus, |A| = 1(- 15 + 3) = - 12

(ii) \(\left|\begin{array}{rrr} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rrr} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{array}\right|\)
Expanding along R1, we get
|A| = 3(1 × 1 - (3) × (- 2)) + 4(1 × 1 - 2 × (- 2)) + 5(1 × 3 - 2 × 1)
= 3(1 + 6) + 4(1 + 4) + 5(3 - 2)
= (3 × 7) + (4 × 5) + (5 × 1) = 46

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

(iii) \(\left|\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{array}\right|\)
Answer:
Let |A| = \(\left|\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{array}\right|\)
Expanding along R1, we get
A = 0 - 1(- 1 × 0 - (- 2) × (- 3)) + 2(- 1 × 3 - (- 2) × 0)
= - 1(0 - 6) + 2(- 3 - 0) = 6 - 6 = 0

(iv) \(\left|\begin{array}{rrr} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Answer:
\(\left|\begin{array}{rrr} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{array}\right|\)
Expanding along R1, we get
|A| = 0 + 2(2 × 0 - 3 × (- 2)) + 1(2 × (- 5)- 3 × (- 1))
= 2(0 + 6) + 1(- 10 + 3)
= 2 × 6 + 1 × (- 7)
= 12 - 7 = 5

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Question 6.
If A = \(\left[\begin{array}{rrr} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{array}\right]\), then find |A|.
Answer:
Let |A| = \(\left[\begin{array}{rrr} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{array}\right]\)
Expanding along R1, we get
|A| = 1(1 × (- 9) - 4 × (- 3)) - 1(2 × (- 9) - 5 × (- 3)) - 2(2 × 4 - 5 × 1)
= |A| = 1( - 9 + 12) - 1(- 18 + 15) - 2(8 - 5)
= (1 × 3) - (1 × (- 3) - (2 × 3)
= 3 + 3 - 6 = 6 - 6 = 0
Thus, |A| = 0

Question 7.
Find the value of x, if
(i) \(\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{rr} 2 x & 4 \\ 6 & x \end{array}\right|\)
Answer:
Given, \(\left|\begin{array}{ll} 2 & 4 \\ 5 & 1 \end{array}\right|=\left|\begin{array}{rr} 2 x & 4 \\ 6 & x \end{array}\right|\)
⇒ (2 × 1) - (5 × 4) = (2x × x) - (6 × 4)
⇒ 2 - 20 = 2x2 - 24 ⇒ - 18 = 2x2 - 24
⇒ 2x2 = 24 - 18
⇒ 2x2 = 6
⇒ x2 = 3
∴ x = ± √3

(ii) \(\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right|\)
Answer:
\(\left|\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right|=\left|\begin{array}{cc} x & 3 \\ 2 x & 5 \end{array}\right|\)
⇒ (2 × 5) - (4 × 3) = (x × 5) - (2x × 3)
⇒ 10 - 12 = 5x - 6x
⇒ - 2 = - x ⇒ x = 2

RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

Question 8.
If \(\left|\begin{array}{cc} x & 2 \\ 18 & x \end{array}\right|=\left|\begin{array}{cc} 6 & 2 \\ 18 & 6 \end{array}\right|\), then x is equal to:
(A) 6
(B) ± 6
(C) - 6
(D) 0
Answer:
Given, \(\left|\begin{array}{cc} x & 2 \\ 18 & x \end{array}\right|=\left|\begin{array}{cc} 6 & 2 \\ 18 & 6 \end{array}\right|\)
⇒ (x × x) - (18 × 2) = (6 × 6) - (18 × 2)
⇒ x2 - 36 = 36 - 36 ⇒ x2 - 36 = 0
⇒ x2 = 36 ⇒ x = √36 ⇒ x = ±6
Thus, option (B) is correct.

Bhagya
Last Updated on Nov. 2, 2023, 9:24 a.m.
Published Nov. 1, 2023