RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Textbook Exercise Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Solutions Chapter 3 Matrices Ex 3.3

Question 1.
Find the response of each of the following matrices:
(i) \(\left[\begin{array}{r} 5 \\ \frac{1}{2} \\ -1 \end{array}\right]\)
Answer:
\(\left[\begin{array}{lll} 5 & \frac{1}{2} & -1 \end{array}\right]\)

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(ii) \(\left[\begin{array}{rr} 1 & -1 \\ 2 & 3 \end{array}\right]\)
Answer:
\(\left[\begin{array}{rr} 1 & 2 \\ -1 & 3 \end{array}\right]\)

(iii) \(\left[\begin{array}{rrr} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{array}\right]\)
Answer:
\(\left[\begin{array}{rrr} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \end{array}\right]\)

Question 2.
If A = \(\left[\begin{array}{rrr} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{array}\right]\) and B = \(\left[\begin{array}{rrr} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{array}\right]\) then verify that
(i) (A + B)' = A' + B'
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 1

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(ii) (A - B)' = A' - B'
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 2

Question 3.
If A' = \(\left[\begin{array}{rr} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{array}\right]\) and B = \(\left[\begin{array}{rrr} -1 & 2 & 1 \\ 1 & 2 & 3 \end{array}\right]\) then verify that
(i) (A + B)' = A' + B'
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 3

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(ii) (A - B)' = A' - B'
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 4

Question 4.
If A' = \(\left[\begin{array}{rr} -2 & 3 \\ 1 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{rr} -1 & 0 \\ 1 & 2 \end{array}\right]\), then find (A + 2B).
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 5

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 5.
For the matrices A and B verify that (AB)' = B'A', where
(i) A = \(\left[\begin{array}{r} 1 \\ -4 \\ 3 \end{array}\right]\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 6

(ii) A = \(\left[\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right]\), B = [1 5 7]
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 7

Question 6.
(i) If A = \(\left[\begin{array}{rr} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]\), then verify that AA' = I.
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 8

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(ii) If A = \(\left[\begin{array}{rr} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{array}\right]\) , then verify that A'A = I.
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 9

Question 7.
(i) Show that the matrix A = \(\left[\begin{array}{rrr} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right]\) is a symmetric matrix.
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 10

(ii) Prove that the matrix A = \(\left[\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right]\) is a skew-symmetric matrix.
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 11

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 8.
For matrix A = \(\left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right]\), verify that
(i) (A + A') is a symmetric matrix
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 12
= A + A'
∴ (A + A')' = A + A'
Thus, A + A' is a symmetric matrix.

(ii) (A - A') is a skew-symmetric matrix
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 13
= - (A - A')
∵ (A - A')' = - (A - A')
Thus, A - A' is a skew-symmetric matrix.

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 9.
If A = \(\left[\begin{array}{rrr} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array}\right]\), then find \(\frac{1}{2}\) (A + A') and \(\frac{1}{2}\) (A - A').
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 14

Question 10.
Express the following matrices as the sum of a symmetric and a skew-symmetric matrix.
(i) \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\)
We know that any square matrix can be expressed as sum of symmetric and skew-symmetric matrices.
Here, A = \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\) then \(\frac{1}{2}\) (A + A') will be symmetric and \(\frac{1}{2}\) (A - A') will be skew-symmetric matrix.
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 15

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(ii) \(\left[\begin{array}{rrr} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right]\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 16
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 17

(iii) \(\left[\begin{array}{rrr} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{array}\right]\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 20
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 21

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

(iv) \(\left[\begin{array}{rr} 1 & 5 \\ -1 & 2 \end{array}\right]\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 22

Choose the correct answer in the exercises 11 and 12.

Question 11.
If A, B are symmetric matrices of same order, then AB - BA is a:
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Answer:
Matrix A and B are symmetric matrix of equal order.
∴ A' = A, B' = B
(AB - BA)' = (AB)' - (BA)'
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 18
= - (AB - BA)
= skew-symmetric matrix
= (AB - BA) skew-symmetric matrix.
Thus, (A) is correct.

RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 12.
If A = \(\left[\begin{array}{rr} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]\), then A + A' = I, then the value of α is:
(A) \(\frac{\pi}{6}\)
(B) \(\frac{\pi}{3}\)
(C) π
(D) \(\frac{3 \pi}{2}\)
Answer:
RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 19

Bhagya
Last Updated on Nov. 1, 2023, 5:17 p.m.
Published Oct. 31, 2023