Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
Find the response of each of the following matrices:
(i) \(\left[\begin{array}{r} 5 \\ \frac{1}{2} \\ -1 \end{array}\right]\)
Answer:
\(\left[\begin{array}{lll} 5 & \frac{1}{2} & -1 \end{array}\right]\)
(ii) \(\left[\begin{array}{rr} 1 & -1 \\ 2 & 3 \end{array}\right]\)
Answer:
\(\left[\begin{array}{rr} 1 & 2 \\ -1 & 3 \end{array}\right]\)
(iii) \(\left[\begin{array}{rrr} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{array}\right]\)
Answer:
\(\left[\begin{array}{rrr} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \end{array}\right]\)
Question 2.
If A = \(\left[\begin{array}{rrr} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{array}\right]\) and B = \(\left[\begin{array}{rrr} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{array}\right]\) then verify that
(i) (A + B)' = A' + B'
Answer:
(ii) (A - B)' = A' - B'
Answer:
Question 3.
If A' = \(\left[\begin{array}{rr} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{array}\right]\) and B = \(\left[\begin{array}{rrr} -1 & 2 & 1 \\ 1 & 2 & 3 \end{array}\right]\) then verify that
(i) (A + B)' = A' + B'
Answer:
(ii) (A - B)' = A' - B'
Answer:
Question 4.
If A' = \(\left[\begin{array}{rr} -2 & 3 \\ 1 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{rr} -1 & 0 \\ 1 & 2 \end{array}\right]\), then find (A + 2B).
Answer:
Question 5.
For the matrices A and B verify that (AB)' = B'A', where
(i) A = \(\left[\begin{array}{r} 1 \\ -4 \\ 3 \end{array}\right]\)
Answer:
(ii) A = \(\left[\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right]\), B = [1 5 7]
Answer:
Question 6.
(i) If A = \(\left[\begin{array}{rr} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]\), then verify that AA' = I.
Answer:
(ii) If A = \(\left[\begin{array}{rr} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{array}\right]\) , then verify that A'A = I.
Answer:
Question 7.
(i) Show that the matrix A = \(\left[\begin{array}{rrr} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right]\) is a symmetric matrix.
Answer:
(ii) Prove that the matrix A = \(\left[\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right]\) is a skew-symmetric matrix.
Answer:
Question 8.
For matrix A = \(\left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right]\), verify that
(i) (A + A') is a symmetric matrix
Answer:
= A + A'
∴ (A + A')' = A + A'
Thus, A + A' is a symmetric matrix.
(ii) (A - A') is a skew-symmetric matrix
Answer:
= - (A - A')
∵ (A - A')' = - (A - A')
Thus, A - A' is a skew-symmetric matrix.
Question 9.
If A = \(\left[\begin{array}{rrr} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array}\right]\), then find \(\frac{1}{2}\) (A + A') and \(\frac{1}{2}\) (A - A').
Answer:
Question 10.
Express the following matrices as the sum of a symmetric and a skew-symmetric matrix.
(i) \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\)
Answer:
Let A = \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\)
We know that any square matrix can be expressed as sum of symmetric and skew-symmetric matrices.
Here, A = \(\left[\begin{array}{rr} 3 & 5 \\ 1 & -1 \end{array}\right]\) then \(\frac{1}{2}\) (A + A') will be symmetric and \(\frac{1}{2}\) (A - A') will be skew-symmetric matrix.
(ii) \(\left[\begin{array}{rrr} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right]\)
Answer:
(iii) \(\left[\begin{array}{rrr} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{array}\right]\)
Answer:
(iv) \(\left[\begin{array}{rr} 1 & 5 \\ -1 & 2 \end{array}\right]\)
Answer:
Choose the correct answer in the exercises 11 and 12.
Question 11.
If A, B are symmetric matrices of same order, then AB - BA is a:
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Answer:
Matrix A and B are symmetric matrix of equal order.
∴ A' = A, B' = B
(AB - BA)' = (AB)' - (BA)'
= - (AB - BA)
= skew-symmetric matrix
= (AB - BA) skew-symmetric matrix.
Thus, (A) is correct.
Question 12.
If A = \(\left[\begin{array}{rr} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]\), then A + A' = I, then the value of α is:
(A) \(\frac{\pi}{6}\)
(B) \(\frac{\pi}{3}\)
(C) π
(D) \(\frac{3 \pi}{2}\)
Answer: