Rajasthan Board RBSE Solutions for Class 12 Maths Chapter 10 Vector Algebra Ex 10.4 Textbook Exercise Questions and Answers.
Question 1.
Find |\(\vec{a} \times \vec{b}\)|, if \(\vec{a}\) = î - 7ĵ + k̂ and \(\vec{b}\) = 3î - 2ĵ + 2k̂
Answer:
= [- 14 - (- 2) × 7]î - [1 × 2 - 3 × 7] + [1 × (- 2) - 3 (- 7)]
= [- 14 + 14)î - (2 - 21)ĵ + (- 2 + 21)k̂
= 0î + 19ĵ + 19k̂= 19ĵ + 19k̂
Now, |\(\vec{a} \times \vec{b}\)| = |19ĵ + 19k̂| = \(\sqrt{19^2+19^2}\)
= \(\sqrt{361+361}\) = \(\sqrt{722}\) = 19√2
Question 2.
Find a unit vector perpendicular to each of the vector \(\vec{a}+\vec{b}\) and \(\vec{a}-\vec{b}\), where \(\vec{a}\) = 3î + 2ĵ + 2k̂ and \(\vec{b}\) = î + 2ĵ - 2k̂.
Answer:
Given:
∴ Unit vector in the perpendicular direction of (\(\vec{a} + \vec{b}\)) and (\(\vec{a} - \vec{b}\)) is:
Question 3.
If a unit vector \(\vec{a}\) makes angles \(\frac{\pi}{3}\) with î, \(\frac{\pi}{4}\) with ĵ and an acute angle θ with k̂, then find θ and hence, the components of \(\vec{a}\).
Answer:
Question 4.
Show that
\((\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})\)
Answer:
Question 5.
Find λ and μ if
(2î + 6ĵ + 27k̂) × (î + λĵ + μk̂) = 0
Answer:
Question 6.
Given that \(\vec{a} \cdot \vec{b}\) = 0 and \(\vec{a} \times \vec{b}\) = 0. What can you conclude about the vectors \(\vec{a}\) and \(\vec{b}\)?
Answer:
Question 7.
Let the vectors \(\vec{a}, \vec{b}, \vec{c}\) be given as a1î + a2ĵ + a3k̂, b1î + b2ĵ + b3k̂, c1î + c2ĵ + c3k̂. Then show that
\(\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}\)
Answer:
Question 8.
If either \(\vec{a} =\overrightarrow{0}\) or \(\vec{b}\) = 0, then \(\vec{a} \times \vec{b}=\overrightarrow{0}\) is the converse true? Justify your answer with an example.
Answer:
Thus, the converse is not true.
Question 9.
Find the area of the triangle with vertices A (1, 1, 2), B(2, 3, 5) and C (1, 5, 5).
Answer
Let O be the origin. Then w.r.t. O
Position vector of point A
\(\overrightarrow{O A}\) = î + ĵ + 2k̂
Position vector of point B
\(\overrightarrow{O B}\) = 2î + 3ĵ + 5k̂
Position vector of point C
\(\overrightarrow{O C}\) = î + 5ĵ + 5k̂
Question 10.
Find the area of the parallelogram whose adjacent sides are determined by the vectors
\(\vec{a}\) = î - ĵ + 3k̂ and \(\vec{b}\) = 2î - 7ĵ + k̂.
Answer:
Given, adjacent sides of the parallelogram are:
Question 11.
Let the vectors \(\vec{a}\) and \(\vec{b}\) be such that |\(\vec{a}\)| = 3 and |\(\vec{b}\)| = \(\frac{\sqrt{2}}{3}\) then \(\vec{a} \times \vec{b}\) is a unit vector, if the angle between \(\vec{a}\) and \(\vec{b}\) is:
(A) π/6
(B) π/4
(C) π/3
(D) π/2
Answer:
Thus, option (B) is correct.
Question 12.
Area of a rectangle having vertices A, B, C and D with position vectors
- î + ĵ + 4k̂, î + \(\frac{1}{2}\)ĵ + 4k̂, î - \(\frac{1}{2}\)ĵ + 4k̂ and - î - \(\frac{1}{2}\)ĵ + 4k̂, respectively is:
(A) \(\frac{1}{2}\)
(B) 1
(C) 2
(D) 4
Answer:
Let O be the Origin, then w.r.t. O
Position vector of vertex A