Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 7 Integrals Important Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
Evaluate: ∫\(\frac{2}{1+\cos 2 x}\) dx
Answer:
∫\(\frac{2}{1+\cos 2 x}\) dx = ∫\(\frac{2}{2 \cos ^2 x}\) dx [∵cos 2θ = 2 cos2θ - 1]
= ∫ sec2 x dx = tan x + C
Question 2.
Evaluate: ∫\(\frac{2 \cos x}{\sin ^2 x}\) dx
Answer:
∫\(\frac{2 \cos x}{\sin ^2 x}\) dx = 2∫\(\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}\) dx
= 2 ∫cosec x cot x dx
= 2 (- cosec x) + C
= - \(\frac{2}{\sin x}\) + C
Question 3.
Evaluate: ∫\(\frac{x^3-1}{x^2}\) dx
Answer:
Question 4.
Evaluate: ∫2x dx
Answer:
∫2x dx = \(\frac{2^x}{\log 2}\) + C [∵ ∫ax dx = \(\frac{a^x}{\log a}\) + C]
Question 5.
Evaluate: ∫\(\sqrt{1-\sin 2 x}\) dx, \(\frac{\pi}{4}\)< x < \(\frac{\pi}{2}\)
Answer:
Question 6.
Find the integral of the following functions with respect to x: \(\frac{3 x^2}{1+x^3}\)
Answer:
Let I = ∫\(\frac{3 x^2}{1+x^3}\)
Putting 1 + x3 = t
Then, 3x2 dx = dt
∴ ∫\(\frac{3 x^2}{1+x^3}\) dx = ∫\(\frac{d t}{t}\)
= log |t| + C
= log |1 + x3| + C
Question 7.
Evaluate: ∫\(\frac{\sec x}{\log (\sec x+\tan x)}\) dx
Answer:
= log |t| + C
= log |log (sec x + tan x)| + C
Question 8.
Evaluate: ∫\(\frac{\cos x}{\cos (x-b)}\) dx
Answer:
Let I = ∫\(\frac{\cos x}{\cos (x-b)}\) dx
Putting x - b = t
and x = t + b
Then, dx = dt
= cos b∫1 dt - sin b∫ tan t dt
= cos b × t - sin b(- log |cos t|) + C
= t cos b + sin b log |cos t| + C
= (x - b)cos b + sin b log |cos(x - b)| + C
Question 9.
Evaluate ∫\(\frac{\sin ^6 x}{\cos ^8 x}\) dx
Answer:
Question 10.
Evaluate: ∫\(\sqrt{1-\sin x}\) dx
Answer:
Question 11.
Evaluate: ∫\(\frac{d x}{\sin x+\cos x}\)
Answer:
Question 12.
Evaluate:
(i) ∫\(\frac{\sin 8 x}{\cos 4 x}\) dx
Answer:
(ii) ∫\(\frac{\sin 6 x}{\sin 3 x}\)
Answer:
Question 13.
Evaluate: ∫cos3 x dx
Answer:
Question 14.
Evaluate: ∫\(\frac{x^2+4}{x^4+16}\) dx
Answer:
Question 15.
Evaluate: ∫\(\frac{d x}{x^2+4 x+8}\)
Answer:
Question 16.
Evaluate: ∫\(\frac{d x}{5-8 x-x^2}\)
Answer:
Question 17.
Find the following: ∫\(\frac{1}{\sqrt{5 x-6-x^2}}\)
Answer:
Question 18.
Evaluate: ∫\(\frac{x+2}{\sqrt{x^2+5 x+6}}\) dx
Answer:
Let I = ∫\(\frac{x+2}{\sqrt{x^2+5 x+6}}\) dx
Let A and B be two numbers such that:
x + 2 = A \(\frac{d}{d x}\) (x2 + 5x + 6) + B
⇒ x + 2 = A(2x + 5) + B
On equating the coefficients of x and constant terms from both sides, we get
2A = 1 and 5A + B = 2
Question 19.
Evaluate: ∫\(\frac{5 x-2}{1+2 x+3 x^2}\) dx
Answer:
Let I = ∫\(\frac{5 x-2}{1+2 x+3 x^2}\) dx ...... (i)
Let A and B be two numbers such that:
5x - 2 = A \(\frac{d}{d x}\) (1 + 2x + 3x2) + B
⇒ 5x - 2 = A(2 + 6x) + B
On comparing the coefficients of x and constrant terms,
we get
5 = 6A ⇒ A = \(\frac{5}{6}\)
and - 2 = 2A + B ⇒ B = - 2A - 2
Question 20.
Evaluate: ∫\(\frac{\cos \theta}{\left(4+\sin ^2 \theta\right)\left(5-4 \cos ^2 \theta\right)}\) dθ
Answer:
Question 21.
Evaluate: ∫\(\frac{\left(x^2+1\right)\left(x^2+4\right)}{\left(x^2+3\right)\left(x^2-5\right)}\) dx
Answer:
Question 22.
Evaluate: ∫\(\frac{d x}{\sin x+\sin 2 x}\)
Answer:
Let
[Multiplying numerator and denominator by sin x]
= ∫\(\frac{\sin x}{\left(1-\cos ^2 x\right)(1+2 \cos x)}\) dx
Put cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ I = ∫\(\frac{-d t}{\left(1-t^2\right)(1+2 t)}\)
= ∫\(\frac{-d t}{(1-t)(1+t)(1+2 t)}\) ...... (i)
Now, using partial fraction,
Let \(\frac{1}{(1-t)(1+t)(1+2 t)}\) = \(\frac{A}{1-t}+\frac{B}{1+t}+\frac{C}{1+2 t}\) ...... (ii)
⇒ 1 = (1 + t) (1 + 2t)A + (1 - t) (1 + 2t)B + (1 - t) (1 + t)C .......... (iii)
On putting t = - 1 in Eq.(iii), we get
1 + (2) (- 1) B ⇒ B = - \(\frac{1}{2}\)
On putting t = 1 in Eq. (lu), we get
1 = 2. (3) A ⇒ A = - \(\frac{1}{6}\)
On putting t = - \(\frac{1}{2}\) in Eq. (iii), we get
Question 23.
Evaluate: ∫\(\frac{x^3}{x^4+3 x^2+2}\) dx
Answer:
⇒ t = A(t + 1) + B(t + 2)
⇒ t = (A + B)t + A + 2B
Comparing the coefficients of t and constant terms in both sides, we have
A + B = 1
A + 2B = 0 .
Now, solving these equations, we get
A = 2 and B = - 1
Question 24.
Evaluate: ∫\(\frac{2 x^2+1}{x^2\left(x^2+4\right)}\) dx
Answer:
⇒ 2t + 1 = A(t + 4) + Bt
⇒ 2t + 1 = (A + B)t + 4A
On comparing the coefficients of t and constant terms, we get
A + B = 2
and 4A = 1
On solving these two equations, we get
Question 25.
Find ∫\(\frac{(2 x-5) e^{2 x}}{(2 x-3)^3}\) dx
Answer:
Question 26.
Evaluate: ∫\(\frac{x^2}{(x \sin x+\cos x)^2}\) dx
Answer:
Let I = ∫\(\frac{x^2}{(x \sin x+\cos x)^2}\) dx
Multiplying Nr and Dr by cos x, we get
I = ∫\(\frac{x^2}{(x \sin x+\cos x)^2} \cdot \frac{\cos x}{\cos x}\) dx
⇒ I = ∫\(\frac{x \cos x}{(x \sin x+\cos x)^2}\). x sec x dx ........ (i)
Putting x sin x + cos x = t
⇒ (x cos x + sin x - sin x)dx = dt
⇒ x cos x dx = dt
Question 27.
Evaluate: ∫\(\frac{\sqrt{1-\sin x}}{1+\cos x}\) e-x/2 dx
Answer:
Let I = ∫\(\frac{\sqrt{1-\sin x}}{1+\cos x}\) e-x/2 dx
Put \(\frac{-x}{2}\) = t ⇒ dx = - 2 dt
Question 28.
Evaluate: ∫\(\frac{\sqrt{x^2+1}\left[\log \left|x^2+1\right|-2 \log |x|\right]}{x^4}\)
Answer:
Question 29.
Evaluate: ∫\(\sqrt{x^2-x+1}\) dx
Answer:
Question 30.
Evaluate: ∫(2x + 5)\(\sqrt{10-4 x-3 x^2}\) dx
Answer:
Let I = ∫(2x + 5)\(\sqrt{10-4 x-3 x^2}\) dx
Now, let us write 2x + 5 = A \(\frac{d}{d x}\) (10 - 4x - 3x2) + B
where A and B are constants.
⇒ 2x + 5 = A(- 4 - 6x) + B ........ (i)
⇒ 2x + 5 = - 6Ax + (B - 4A)
On comparing the coefficient .of x and the constant term, we get
Question 31.
Evaluate: ∫(x - 3) \(\sqrt{x^2+3 x-18}\) dx
Answer:
Let I = ∫(x - 3) \(\sqrt{x^2+3 x-18}\) dx
Now, let us write (x - 3) as
x - 3 = A \(\frac{d}{d x}\) (x2 - 3x - 18) + B
⇒ x - 3 = A(2x + 3) + B
On equating the coefficient’s of x and constant terms from both sides, we get
2A = 1
and 3A + B = - 3
Question 32.
Evaluate \(\int_1^3\) (3x2 + 1) dx by the method of limit of sum.
Answer:
We have \(\int_1^3\) (3x2 + 1) dx
Here, a = 1, b = 3, nh = b - a = 3 - 1 = 2
and f(x) = 3x2 + 1
f(1) = 3(1)2 + 1 = 4
f(1 + h) = 3(1 + h)2 + 1 = 4 + 6h(1) + 3h2(1)2
f(1 + 2h) = 3(1 + 2h)2 + 1 = 4 + 6h(2) + 3h2(2)2
f[1 + (n - 1)h] = 3[1 + (n - 1)h]2 + 1
= 4 + 6h(n - 1) + 3h2(n - 1)2
Question 33.
Evaluate \(\int_1^3\) (2x2 + 5x) dx as a limit of sum.
Answer:
Let I = \(\int_1^3\) (2x2 + 5x) dx
Here, a = 1, b = 3, f(x) = 2x2 + 5x, and nh = b - a = 3 - 1 = 2
∴ f(1) = 2(1)2 + 5(1) = 2 + 5 = 7
f(1 + h) = 2(1 + h)2 + 5(1 + h)
= 2 + 2h2 + 4h + 5 + 5h
= 2h2 + 9h + 7
f(1+ 2h) = 2(1 + h)2 + 5(1 + 2h)
= 2 + 8h2 + 8h + 5 + 10h
Question 34.
Evaluate \(\int_1^3\) (e2 - 3x + x2 dx as a limit of a sum.
Answer:
Let I = \(\int_1^3\) (e2 - 3x + x2 dx
On comparing the
\(\int_a^b\) f(x) dx, we get
a = 1, b = 3, f(x) = e2 - 3x + x2 + 1
As we know that,
\(\int_a^b\) f(x) dx = \(\lim _{h \rightarrow 0}\) h[f(a) + f(a + h) + f(a + 2h) + ...... + f[a + (n - 1)h}] ...... (1)
where, nh = b - a,
Here, nh = 3 - 1 = 2
f(a) = f(1) = e2 - 3(1) + (1)2 + 1
f(a + h) = f(1 + h) = e2 - 3(1 + h) + (1 + h)2 + 1
f(a + 2h) = f(1 + 2h) = 22 - 3(1 + 2h) + (1 + 2h)2 + 1
Question 35.
Evaluate: \(\int_1^2 \frac{x^3-1}{x^2}\) dx
Answer:
Question 36.
Evaluate \(\int_1^{\sqrt{3}} \frac{1}{1+x^2}\) dx
Answer:
Question 37.
Evaluate: \(\int_0^2 \sqrt{4-x^2}\) dx
Answer:
Question 38.
If \(\int_0^1\) (3x2 + 2x + k) dx = 0, find the value of k.
Answer:
Given \(\int_0^1\) (3x2 + 2x + k) dx = 0
⇒ 1 + 1 + k = 0
⇒ k + 2 = 0
⇒ k = - 2
Question 39.
Evaluate: \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx
Answer:
[∵ a2 + b2 - 2ab = (a - b)2]
Put sin x - cos x = t ⇒ (cos x + sin x)dx = dt
Also, when, x = 0, then t = - 1
and when, x = \(\frac{\pi}{4}\) then t = 0
Question 40.
Prove that: \(\int_0^{\pi / 4}(\sqrt{\tan x}+\sqrt{\cot x})\) dx = \(\sqrt{2} \cdot \frac{\pi}{2}\)
Answer:
Now, put sin x - cos x = t
⇒ (cos x + sin x)dx = dt
Also, when x = 0, then t = - 1
and when x = \(\frac{\pi}{4}\), then t = 0
∴ I = √2 \(\int_{-1}^0 \frac{d t}{\sqrt{1-t^2}}=\sqrt{2}\left[\sin ^{-1} t\right]_{-1}^0\)
= √2[sin-1 (0) - sin-1 (- 1)]
= √2[sin-1 (0) + sin-1 (1)]
= √2\(\left[\frac{\pi}{2}\right]\)
Hence proved.
Question 41.
Evaluate: \(\int_0^{\pi / 4} \frac{d x}{\cos ^3 x \sqrt{2 \sin 2 x}}\)
Answer:
Multiple Choice Questions
Question 1.
∫ex(1 + tan x + tan2 x) dx =
(a) ex cos x + c
(b) ex sin x + c
(c) ex tan x + c
(d) ex sec x + c
Answer:
(c) ex tan x + c
Question 2.
∫x2 ex3 dx equals:
(a) \(\frac{1}{3}\) ex3 + C
(b) \(\frac{1}{3}\) ex4 +C
(c) \(\frac{1}{2}\) ex3 + C
(d) \(\frac{1}{2}\) ex2 + C
Answer:
(a) \(\frac{1}{3}\) ex3 + C
Question 3.
∫ \(\frac{(y-1)}{(y-3)(y-2)}\) dy =
(a) log(y - 3) - log(y - 2) + c
(b) log(y - 3)2 - log(y - 2) + c
(c) log(y - 3) + log(y - 2) + c
(d) log(y - 3)2 + log (y - 2) + c
Answer:
(b) log(y - 3)2 - log(y - 2) + c
Question 4.
The value of ∫ \(\frac{d x}{\sqrt{2 x-x^2}}\) is:
(a) sin-1 (x - 1) + c
(b) sin-1 (1 + x) + c
(c) sin-1 (1 + x) + c
(d) - \(\sqrt{2 x-x^2}\) + c
Answer:
(a) sin-1 (x - 1) + c
Question 5.
The value of ∫ y3 log y dy is:
(a) \(\frac{1}{8}\) {y4 log y - 4y4 + c}
(b) \(\frac{1}{16}\) {4y4 log y - y4 + c}
(c) \(\frac{y^4 \log y}{4}\)+c
(d) \(\frac{1}{16}\) {4y4 log y + y4 + c}
Answer:
(b) \(\frac{1}{16}\) {4y4 log y - y4 + c}
Question 6.
∫\(\frac{d x}{x^2+4 x+13}\) =
(a) log (2x + 4) + c
(b) log (x2 + 4x + 13) + c
(c) \(\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)\) + c
(d) \(\frac{1}{\left(x^2+4 x+13\right)}\) + c
Answer:
(c) \(\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)\) + c
Question 7.
∫ex {f (x) + f’(x)} dx = ex sin x, then f(x) is equal to:
(a) sin x
(b) - sin x
(c) cos x - sin x
(d) sin x + cos x
Answer:
(a) sin x
Question 8.
∫\(\frac{1}{\sin x+\cos x}\) dx is
(a) \(\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\)+C
(b) log tan\(\left(\frac{x}{2}+\frac{\pi}{8}\right)\) + C
(c) \(\frac{1}{2} logtan\left(\frac{x}{2}+\frac{\pi}{8}\right)\) + C
(d) \(\frac{1}{\sqrt{2}}log tan\left(x+\frac{\pi}{4}\right)\) + C
Answer:
(a) \(\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\)+C
Question 9.
∫\(\frac{\cos 2 x+2 \sin x}{\cos ^2 x}\) dx =
(a) tan x
(b) cot x
(c) sin x
(d) none of these
Answer:
(d) none of these
Question 10.
If \(\int_0^{\pi / 2} \frac{d x}{9 \sin ^2 x+4 \cos ^2 x}\) = Pπ, then P =
(a) \(\frac{1}{16}\)
(b) \(\frac{1}{12}\)
(c) \(\frac{1}{8}\)
(d) \(\frac{1}{3}\)
Answer:
(b) \(\frac{1}{12}\)
Question 11.
The value of \(\int_{-1}^0 \frac{d x}{x^2+2 x+2}\) is:
(a) 0
(b) \(\frac{\pi}{4}\)
(c) - \(\frac{\pi}{4}\)
(d) \(\frac{\pi}{2}\)
Answer:
(b) \(\frac{\pi}{4}\)
Question 12.
\(\int_0^1\) x(1 - x)99 is equal to:
(a) \(\frac{1}{10010}\)
(b) \(\frac{1}{10100}\)
(c) \(\frac{1}{1010}\)
(d) \(\frac{1}{10100}\)
Answer:
(b) \(\frac{1}{10100}\)
Question 13
\(\int_0^{\pi / 4} \frac{\sin \theta-\cos \theta}{\sqrt{1-\sin 2 \theta}}\) dθ is equal to:
(a) \(\frac{\pi}{4}\)
(b) \(\frac{-\pi}{4}\)
(c) \(\frac{\pi}{4} \text { or } \frac{-\pi}{4}\)
(d) none of these
Answer:
(b) \(\frac{-\pi}{4}\)
Question 14.
The value of the integral \(\int_0^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}\) dx is:
(a) 0
(b) \(\frac{\pi}{4}\)
(c) \(\frac{\pi}{2}\)
(d) none of these
Answer:
(b) \(\frac{\pi}{4}\)
Question 15.
\(\int_{-\pi / 2}^{\pi / 2}\) sin2 x cos2 x(sin x + cos x)dx =
(a) \(\frac{2}{5}\)
(b) \(\frac{2}{15}\)
(c) \(\frac{4}{15}\)
(d) \(\frac{8}{15}\)
Answer:
(c) \(\frac{4}{15}\)
Fill in the blanks
Question 1.
The process of finding anti derivatives is called ............................... .
Answer:
integration
Question 2.
C is customarily referred to as ................................. constant.
Answer:
arbitrary
Question 3.
The process of differentiation and integration are ................................. of each other.
Answer:
inverse
Question 4.
Two indefinite integrals with the same derivative are ................................... .
Answer:
equivalent
Question 5.
Any two integrals of a function differ by a ..................................
Answer:
constant
True/False
Question 1.
When a polynomial function is differentiated, the result is a polynomial whose degree is 1 less than the degree of the function.
Answer:
True
Question 2.
When a polynomial function is integrated, the result is a polynomial whose degree is I more than that of the function.
Answer:
True
Question 3.
We make a substitution for a function whose derivative also occurs in the integrand.
Answer:
True
Question 4.
In \(\frac{P(x)}{Q(x)}\), if the degree of P(x) is greater than the degree of Q(x), then the rational function is called a proper function.
Answer:
False
Question 5.
The proper rational functions can be reduced to the proper rational functions by long division process.
Answer:
False