RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 7 Integrals Important Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Chapter 7 Important Questions Integrals

Question 1.
Evaluate: ∫\(\frac{2}{1+\cos 2 x}\) dx
Answer:
\(\frac{2}{1+\cos 2 x}\) dx = ∫\(\frac{2}{2 \cos ^2 x}\) dx [∵cos 2θ = 2 cos2θ - 1]
= ∫ sec2 x dx = tan x + C

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 2.
Evaluate: ∫\(\frac{2 \cos x}{\sin ^2 x}\) dx
Answer:
\(\frac{2 \cos x}{\sin ^2 x}\) dx = 2∫\(\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}\) dx
= 2 ∫cosec x cot x dx
= 2 (- cosec x) + C
= - \(\frac{2}{\sin x}\) + C

Question 3.
Evaluate: ∫\(\frac{x^3-1}{x^2}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 1

Question 4.
Evaluate: ∫2x dx
Answer:
∫2x dx = \(\frac{2^x}{\log 2}\) + C [∵ ∫ax dx = \(\frac{a^x}{\log a}\) + C]

Question 5.
Evaluate: ∫\(\sqrt{1-\sin 2 x}\) dx, \(\frac{\pi}{4}\)< x < \(\frac{\pi}{2}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 2

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 6.
Find the integral of the following functions with respect to x: \(\frac{3 x^2}{1+x^3}\)
Answer:
Let I = ∫\(\frac{3 x^2}{1+x^3}\)
Putting 1 + x3 = t
Then, 3x2 dx = dt
∴ ∫\(\frac{3 x^2}{1+x^3}\) dx = ∫\(\frac{d t}{t}\)
= log |t| + C
= log |1 + x3| + C

Question 7.
Evaluate: ∫\(\frac{\sec x}{\log (\sec x+\tan x)}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 3
= log |t| + C
= log |log (sec x + tan x)| + C

Question 8.
Evaluate: ∫\(\frac{\cos x}{\cos (x-b)}\) dx
Answer:
Let I = ∫\(\frac{\cos x}{\cos (x-b)}\) dx
Putting x - b = t
and x = t + b
Then, dx = dt
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 4
= cos b∫1 dt - sin b∫ tan t dt
= cos b × t - sin b(- log |cos t|) + C
= t cos b + sin b log |cos t| + C
= (x - b)cos b + sin b log |cos(x - b)| + C

Question 9.
Evaluate ∫\(\frac{\sin ^6 x}{\cos ^8 x}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 5

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 10.
Evaluate: ∫\(\sqrt{1-\sin x}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 6

Question 11.
Evaluate: ∫\(\frac{d x}{\sin x+\cos x}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 7

Question 12.
Evaluate:
(i) ∫\(\frac{\sin 8 x}{\cos 4 x}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 8

(ii) ∫\(\frac{\sin 6 x}{\sin 3 x}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 9

Question 13.
Evaluate: ∫cos3 x dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 10

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 14.
Evaluate: ∫\(\frac{x^2+4}{x^4+16}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 11

Question 15.
Evaluate: ∫\(\frac{d x}{x^2+4 x+8}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 12

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 16.
Evaluate: ∫\(\frac{d x}{5-8 x-x^2}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 13

Question 17.
Find the following: ∫\(\frac{1}{\sqrt{5 x-6-x^2}}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 14

Question 18.
Evaluate: ∫\(\frac{x+2}{\sqrt{x^2+5 x+6}}\) dx
Answer:
Let I = ∫\(\frac{x+2}{\sqrt{x^2+5 x+6}}\) dx
Let A and B be two numbers such that:
x + 2 = A \(\frac{d}{d x}\) (x2 + 5x + 6) + B
⇒ x + 2 = A(2x + 5) + B
On equating the coefficients of x and constant terms from both sides, we get
2A = 1 and 5A + B = 2
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 15
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 16

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 19.
Evaluate: ∫\(\frac{5 x-2}{1+2 x+3 x^2}\) dx
Answer:
Let I = ∫\(\frac{5 x-2}{1+2 x+3 x^2}\) dx ...... (i)
Let A and B be two numbers such that:
5x - 2 = A \(\frac{d}{d x}\) (1 + 2x + 3x2) + B
⇒ 5x - 2 = A(2 + 6x) + B
On comparing the coefficients of x and constrant terms,
we get
5 = 6A ⇒ A = \(\frac{5}{6}\)
and - 2 = 2A + B ⇒ B = - 2A - 2
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 17

Question 20.
Evaluate: ∫\(\frac{\cos \theta}{\left(4+\sin ^2 \theta\right)\left(5-4 \cos ^2 \theta\right)}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 18

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 21.
Evaluate: ∫\(\frac{\left(x^2+1\right)\left(x^2+4\right)}{\left(x^2+3\right)\left(x^2-5\right)}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 19

Question 22.
Evaluate: ∫\(\frac{d x}{\sin x+\sin 2 x}\)
Answer:
Let
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 20
[Multiplying numerator and denominator by sin x]
= ∫\(\frac{\sin x}{\left(1-\cos ^2 x\right)(1+2 \cos x)}\) dx
Put cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ I = ∫\(\frac{-d t}{\left(1-t^2\right)(1+2 t)}\)
= ∫\(\frac{-d t}{(1-t)(1+t)(1+2 t)}\) ...... (i)
Now, using partial fraction,
Let \(\frac{1}{(1-t)(1+t)(1+2 t)}\) = \(\frac{A}{1-t}+\frac{B}{1+t}+\frac{C}{1+2 t}\) ...... (ii)
⇒ 1 = (1 + t) (1 + 2t)A + (1 - t) (1 + 2t)B + (1 - t) (1 + t)C .......... (iii)
On putting t = - 1 in Eq.(iii), we get
1 + (2) (- 1) B ⇒ B = - \(\frac{1}{2}\)
On putting t = 1 in Eq. (lu), we get
1 = 2. (3) A ⇒ A = - \(\frac{1}{6}\)
On putting t = - \(\frac{1}{2}\) in Eq. (iii), we get
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 21

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 23.
Evaluate: ∫\(\frac{x^3}{x^4+3 x^2+2}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 22
⇒ t = A(t + 1) + B(t + 2)
⇒ t = (A + B)t + A + 2B
Comparing the coefficients of t and constant terms in both sides, we have
A + B = 1
A + 2B = 0 .
Now, solving these equations, we get
A = 2 and B = - 1
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 23

Question 24.
Evaluate: ∫\(\frac{2 x^2+1}{x^2\left(x^2+4\right)}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 24
⇒ 2t + 1 = A(t + 4) + Bt
⇒ 2t + 1 = (A + B)t + 4A
On comparing the coefficients of t and constant terms, we get
A + B = 2
and 4A = 1
On solving these two equations, we get
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 25

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 25.
Find ∫\(\frac{(2 x-5) e^{2 x}}{(2 x-3)^3}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 26

Question 26.
Evaluate: ∫\(\frac{x^2}{(x \sin x+\cos x)^2}\) dx
Answer:
Let I = ∫\(\frac{x^2}{(x \sin x+\cos x)^2}\) dx
Multiplying Nr and Dr by cos x, we get
I = ∫\(\frac{x^2}{(x \sin x+\cos x)^2} \cdot \frac{\cos x}{\cos x}\) dx
⇒ I = ∫\(\frac{x \cos x}{(x \sin x+\cos x)^2}\). x sec x dx ........ (i)
Putting x sin x + cos x = t
⇒ (x cos x + sin x - sin x)dx = dt
⇒ x cos x dx = dt
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 27

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 27.
Evaluate: ∫\(\frac{\sqrt{1-\sin x}}{1+\cos x}\) e-x/2 dx
Answer:
Let I = ∫\(\frac{\sqrt{1-\sin x}}{1+\cos x}\) e-x/2 dx
Put \(\frac{-x}{2}\) = t ⇒ dx = - 2 dt
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 28

Question 28.
Evaluate: ∫\(\frac{\sqrt{x^2+1}\left[\log \left|x^2+1\right|-2 \log |x|\right]}{x^4}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 29

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 29.
Evaluate: ∫\(\sqrt{x^2-x+1}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 30

Question 30.
Evaluate: ∫(2x + 5)\(\sqrt{10-4 x-3 x^2}\) dx
Answer:
Let I = ∫(2x + 5)\(\sqrt{10-4 x-3 x^2}\) dx
Now, let us write 2x + 5 = A \(\frac{d}{d x}\) (10 - 4x - 3x2) + B
where A and B are constants.
⇒ 2x + 5 = A(- 4 - 6x) + B ........ (i)
⇒ 2x + 5 = - 6Ax + (B - 4A)
On comparing the coefficient .of x and the constant term, we get
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 31
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 32

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 31.
Evaluate: ∫(x - 3) \(\sqrt{x^2+3 x-18}\) dx
Answer:
Let I = ∫(x - 3) \(\sqrt{x^2+3 x-18}\) dx
Now, let us write (x - 3) as
x - 3 = A \(\frac{d}{d x}\) (x2 - 3x - 18) + B
⇒ x - 3 = A(2x + 3) + B
On equating the coefficient’s of x and constant terms from both sides, we get
2A = 1
and 3A + B = - 3
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 33

Question 32.
Evaluate \(\int_1^3\) (3x2 + 1) dx by the method of limit of sum.
Answer:
We have \(\int_1^3\) (3x2 + 1) dx
Here, a = 1, b = 3, nh = b - a = 3 - 1 = 2
and f(x) = 3x2 + 1
f(1) = 3(1)2 + 1 = 4
f(1 + h) = 3(1 + h)2 + 1 = 4 + 6h(1) + 3h2(1)2
f(1 + 2h) = 3(1 + 2h)2 + 1 = 4 + 6h(2) + 3h2(2)2
f[1 + (n - 1)h] = 3[1 + (n - 1)h]2 + 1
= 4 + 6h(n - 1) + 3h2(n - 1)2
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 34

Question 33.
Evaluate \(\int_1^3\) (2x2 + 5x) dx as a limit of sum.
Answer:
Let I = \(\int_1^3\) (2x2 + 5x) dx
Here, a = 1, b = 3, f(x) = 2x2 + 5x, and nh = b - a = 3 - 1 = 2
∴ f(1) = 2(1)2 + 5(1) = 2 + 5 = 7
f(1 + h) = 2(1 + h)2 + 5(1 + h)
= 2 + 2h2 + 4h + 5 + 5h
= 2h2 + 9h + 7
f(1+ 2h) = 2(1 + h)2 + 5(1 + 2h)
= 2 + 8h2 + 8h + 5 + 10h
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 35

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 34.
Evaluate \(\int_1^3\) (e2 - 3x + x2 dx as a limit of a sum.
Answer:
Let I = \(\int_1^3\) (e2 - 3x + x2 dx
On comparing the
\(\int_a^b\) f(x) dx, we get
a = 1, b = 3, f(x) = e2 - 3x + x2 + 1
As we know that,
\(\int_a^b\) f(x) dx = \(\lim _{h \rightarrow 0}\) h[f(a) + f(a + h) + f(a + 2h) + ...... + f[a + (n - 1)h}] ...... (1)
where, nh = b - a,
Here, nh = 3 - 1 = 2
f(a) = f(1) = e2 - 3(1) + (1)2 + 1
f(a + h) = f(1 + h) = e2 - 3(1 + h) + (1 + h)2 + 1
f(a + 2h) = f(1 + 2h) = 22 - 3(1 + 2h) + (1 + 2h)2 + 1
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 36

Question 35.
Evaluate: \(\int_1^2 \frac{x^3-1}{x^2}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 37

Question 36.
Evaluate \(\int_1^{\sqrt{3}} \frac{1}{1+x^2}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 38

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 37.
Evaluate: \(\int_0^2 \sqrt{4-x^2}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 39

Question 38.
If \(\int_0^1\) (3x2 + 2x + k) dx = 0, find the value of k.
Answer:
Given \(\int_0^1\) (3x2 + 2x + k) dx = 0
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 40
⇒ 1 + 1 + k = 0
⇒ k + 2 = 0
⇒ k = - 2

Question 39.
Evaluate: \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 41
[∵ a2 + b2 - 2ab = (a - b)2]
Put sin x - cos x = t ⇒ (cos x + sin x)dx = dt
Also, when, x = 0, then t = - 1
and when, x = \(\frac{\pi}{4}\) then t = 0
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 42

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 40.
Prove that: \(\int_0^{\pi / 4}(\sqrt{\tan x}+\sqrt{\cot x})\) dx = \(\sqrt{2} \cdot \frac{\pi}{2}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 43
Now, put sin x - cos x = t
⇒ (cos x + sin x)dx = dt
Also, when x = 0, then t = - 1
and when x = \(\frac{\pi}{4}\), then t = 0
∴ I = √2 \(\int_{-1}^0 \frac{d t}{\sqrt{1-t^2}}=\sqrt{2}\left[\sin ^{-1} t\right]_{-1}^0\)
= √2[sin-1 (0) - sin-1 (- 1)]
= √2[sin-1 (0) + sin-1 (1)]
= √2\(\left[\frac{\pi}{2}\right]\)
Hence proved.

Question 41.
Evaluate: \(\int_0^{\pi / 4} \frac{d x}{\cos ^3 x \sqrt{2 \sin 2 x}}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 7 Integrals 44

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Multiple Choice Questions

Question 1.
∫ex(1 + tan x + tan2 x) dx =
(a) ex cos x + c
(b) ex sin x + c
(c) ex tan x + c
(d) ex sec x + c
Answer:
(c) ex tan x + c

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 2.
∫x2 ex3 dx equals:
(a) \(\frac{1}{3}\) ex3 + C
(b) \(\frac{1}{3}\) ex4 +C
(c) \(\frac{1}{2}\) ex3 + C
(d) \(\frac{1}{2}\) ex2 + C
Answer:
(a) \(\frac{1}{3}\) ex3 + C

Question 3.
\(\frac{(y-1)}{(y-3)(y-2)}\) dy =
(a) log(y - 3) - log(y - 2) + c
(b) log(y - 3)2 - log(y - 2) + c
(c) log(y - 3) + log(y - 2) + c
(d) log(y - 3)2 + log (y - 2) + c
Answer:
(b) log(y - 3)2 - log(y - 2) + c

Question 4.
The value of ∫ \(\frac{d x}{\sqrt{2 x-x^2}}\) is:
(a) sin-1 (x - 1) + c
(b) sin-1 (1 + x) + c
(c) sin-1 (1 + x) + c
(d) - \(\sqrt{2 x-x^2}\) + c
Answer:
(a) sin-1 (x - 1) + c

Question 5.
The value of ∫ y3 log y dy is:
(a) \(\frac{1}{8}\) {y4 log y - 4y4 + c}
(b) \(\frac{1}{16}\) {4y4 log y - y4 + c}
(c) \(\frac{y^4 \log y}{4}\)+c
(d) \(\frac{1}{16}\) {4y4 log y + y4 + c}
Answer:
(b) \(\frac{1}{16}\) {4y4 log y - y4 + c}

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 6.
\(\frac{d x}{x^2+4 x+13}\) =
(a) log (2x + 4) + c
(b) log (x2 + 4x + 13) + c
(c) \(\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)\) + c
(d) \(\frac{1}{\left(x^2+4 x+13\right)}\) + c
Answer:
(c) \(\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)\) + c

Question 7.
∫ex {f (x) + f’(x)} dx = ex sin x, then f(x) is equal to:
(a) sin x
(b) - sin x
(c) cos x - sin x
(d) sin x + cos x
Answer:
(a) sin x

Question 8.
\(\frac{1}{\sin x+\cos x}\) dx is
(a) \(\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\)+C
(b) log tan\(\left(\frac{x}{2}+\frac{\pi}{8}\right)\) + C
(c) \(\frac{1}{2} logtan\left(\frac{x}{2}+\frac{\pi}{8}\right)\) + C
(d) \(\frac{1}{\sqrt{2}}log tan\left(x+\frac{\pi}{4}\right)\) + C
Answer:
(a) \(\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\)+C

Question 9.
\(\frac{\cos 2 x+2 \sin x}{\cos ^2 x}\) dx =
(a) tan x
(b) cot x
(c) sin x
(d) none of these
Answer:
(d) none of these

Question 10.
If \(\int_0^{\pi / 2} \frac{d x}{9 \sin ^2 x+4 \cos ^2 x}\) = Pπ, then P =
(a) \(\frac{1}{16}\)
(b) \(\frac{1}{12}\)
(c) \(\frac{1}{8}\)
(d) \(\frac{1}{3}\)
Answer:
(b) \(\frac{1}{12}\)

Question 11.
The value of \(\int_{-1}^0 \frac{d x}{x^2+2 x+2}\) is:
(a) 0
(b) \(\frac{\pi}{4}\)
(c) - \(\frac{\pi}{4}\)
(d) \(\frac{\pi}{2}\)
Answer:
(b) \(\frac{\pi}{4}\)

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 12.
\(\int_0^1\) x(1 - x)99 is equal to:
(a) \(\frac{1}{10010}\)
(b) \(\frac{1}{10100}\)
(c) \(\frac{1}{1010}\)
(d) \(\frac{1}{10100}\)
Answer:
(b) \(\frac{1}{10100}\)

Question 13
\(\int_0^{\pi / 4} \frac{\sin \theta-\cos \theta}{\sqrt{1-\sin 2 \theta}}\) dθ is equal to:
(a) \(\frac{\pi}{4}\)
(b) \(\frac{-\pi}{4}\)
(c) \(\frac{\pi}{4} \text { or } \frac{-\pi}{4}\)
(d) none of these
Answer:
(b) \(\frac{-\pi}{4}\)

Question 14.
The value of the integral \(\int_0^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}\) dx is:
(a) 0
(b) \(\frac{\pi}{4}\)
(c) \(\frac{\pi}{2}\)
(d) none of these
Answer:
(b) \(\frac{\pi}{4}\)

Question 15.
\(\int_{-\pi / 2}^{\pi / 2}\) sin2 x cos2 x(sin x + cos x)dx =
(a) \(\frac{2}{5}\)
(b) \(\frac{2}{15}\)
(c) \(\frac{4}{15}\)
(d) \(\frac{8}{15}\)
Answer:
(c) \(\frac{4}{15}\)

Fill in the blanks

Question 1.
The process of finding anti derivatives is called ............................... .
Answer:
integration

Question 2.
C is customarily referred to as ................................. constant.
Answer:
arbitrary

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 3.
The process of differentiation and integration are ................................. of each other.
Answer:
inverse

Question 4.
Two indefinite integrals with the same derivative are ................................... .
Answer:
equivalent

Question 5.
Any two integrals of a function differ by a ..................................
Answer:
constant

True/False

Question 1.
When a polynomial function is differentiated, the result is a polynomial whose degree is 1 less than the degree of the function.
Answer:
True

Question 2.
When a polynomial function is integrated, the result is a polynomial whose degree is I more than that of the function.
Answer:
True

Question 3.
We make a substitution for a function whose derivative also occurs in the integrand.
Answer:
True

Question 4.
In \(\frac{P(x)}{Q(x)}\), if the degree of P(x) is greater than the degree of Q(x), then the rational function is called a proper function.
Answer:
False

RBSE Class 12 Maths Important Questions Chapter 7 Integrals

Question 5.
The proper rational functions can be reduced to the proper rational functions by long division process.
Answer:
False

Bhagya
Last Updated on Nov. 13, 2023, 9:59 a.m.
Published Sept. 13, 2022