RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 4 Determinants Important Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Chapter 4 Important Questions Determinants

Question 1.
Evaluate the following determinant:
\(\left|\begin{array}{cc} a+i b & c+i d \\ -c+i d & a-i b \end{array}\right|\)
Answer:
Let A = \(\left|\begin{array}{cc} a+i b & c+i d \\ -c+i d & a-i b \end{array}\right|\)
= (a + ib) (a - ib) - (-c + id)(c + id)
= (a2 - i2b2) - (-c2 + i2d2)
= [a2 - (-1)b2] - [-c2 + (-1)d2] [∵ i2 = (-1)]
= (a2 + b2) - (-c2 - a2)
= a2 + b2 + c2 + d2

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 2.
Find the value of x if \(\left|\begin{array}{cc} x+1 & x-1 \\ x-3 & x+2 \end{array}\right|=\left|\begin{array}{cc} 4 & -1 \\ 1 & 3 \end{array}\right|\)
Answer:
Given \(\left|\begin{array}{cc} x+1 & x-1 \\ x-3 & x+2 \end{array}\right|=\left|\begin{array}{cc} 4 & -1 \\ 1 & 3 \end{array}\right|\)
On expanding, we get
⇒ (x + 1)(x + 2) - (x - 1)(x - 3) = 4 × 3 - (-1) × 1
⇒ (x2 + x + 2x + 2) - (x2 - x - 3x + 3) = 12 + 1
⇒ (x2 + x + 2x + 2) - (x2 - 4x + 3) = 13
⇒ x2 + 3x + 2 - x2 + 4x - 3 = 13
⇒ 7x - 1 = 13 ⇒ 7x = 1 + 13 ⇒ 7x = 14
Thus, x = 2

Question 3.
If A = \(\left|\begin{array}{ll} p & 2 \\ 2 & p \end{array}\right| \)and |A3| = 125, then find the value of p.
Answer:
Given, A = \(\left|\begin{array}{ll} p & 2 \\ 2 & p \end{array}\right|\)
∴ |A| = \(\left|\begin{array}{ll} p & 2 \\ 2 & p \end{array}\right|\) = p2 - 4
⇒ |A|3 = 125 [∵ |A|3 = |A3|]
⇒ (p2 - 4)3 = 125
⇒ p2 - 4 = 5 ⇒ p2 = 9
Thus, p = ±3

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 4.
Prove the following:
(i) \(\left|\begin{array}{ccc} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{array}\right|\) = a3 + b3 + c3 - 3abc
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 1
On expanding along C1, we get
= (a + b + c) [(b - c) (a + b - 2c) - (c - a) (c + a - 2b)]
= (a + b + c) [(ab + b2 - 2bc - ca - bc + 2c2) - (c2 + ca - 2bc - ac - a2 + 2ab)]
= (a + b + c)[ab + b2 - 3bc -ca + 2 c2 - c2 + 2bc + a2 - 2ab]
= (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
= a3 + b3 + c3 - 3abc
= RHS

(ii) \(\left|\begin{array}{lll} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{array}\right|=2\left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 2
On interchanging R1 and R2 and after that interchanging R2 and R3, we get
Δ = 2\(\left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|\) = RHS
Hence Proved.

(iii) \(\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\) = (a + b + c)3
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 3
On expanding along Ry we get
= (a + b + c)[1.(a + b + c)(a + b + c) - 0] - 0 + 0
= (a + b + c) (a + b + c) (a + b + c)
= (a + b + c)3 = RHS
Hence Proved.

(iv) \(\left|\begin{array}{ccc} a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a \end{array}\right|\) = 9(a + b)b2
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 4
On expanding along R1, we get
= 3b2(a + b)[0 - 1(- 4 + 1) + 0]
= 3b2(a + b)(-1) (-3) = 3(a + b)b2 (3)
= 9b2(a + b) = R.H.S.
Hence proved

(v) \(\left|\begin{array}{ccc} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{array}\right|\) = 2(a + b)(b + c)(c + a)
Answer:
L.H.S = \(\left|\begin{array}{ccc} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{array}\right|\)
On applying R2 → R2 + R1 and R3 → R3 + R1, we get
= \(\left|\begin{array}{ccc} a+b+c & -c & -b \\ a+b & a+b & -(a+b) \\ a+c & -(a+c) & a+c \end{array}\right|\)
Taking (a + b) and (a + c) common from R2 and R3 respectively, we get
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 5
Expanding along R3 we get
= (a + b)(a + c) [1. {0 + 2 (b + c)}]
= (a + b)(a + c)[2 (b + c)]
= 2 (a + b)(a + c)(b + c)
= R.H.S.

(vi) \(\left|\begin{array}{ccc} a^2+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1 \end{array}\right|\) = (a - 1)3
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 6
Expanding along C3, we get
= (a - 1)2[1.(a + 3) - 4]
= (a - 1)2 (a - 1)
= (a - 1)3 = R.H.S.
Hence Proved.

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

(vii) \(\left|\begin{array}{ccc} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{array}\right|\) = 2(a - b)(b - c)(c - a)(a + b + c)
Answer:
L.H.S = \(\left|\begin{array}{ccc} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{array}\right|\)

On Applying R1 → R1 - R2 and R2 → R2 - R3
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 7
Taking common (a - b) and (b - c) from R1 and R2 respectively, we get
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 8
On expanding along Rt, we get
= (a - b) (b - c) (a2 + ab - c2 - bc) [0 - 2 * 1]
= - 2(a - b) (b - c) (a2 - c2 + ab - bc)
= - 2 (a - b) (b - c) [(a - c) (a + c) + b(a - c)]
= -2 (a - b)(b - c)(a - c)(a + b + c)
= 2 (a - b) (b - c) (c - a) (a + b + c)
= R.H.S.
Hence Proved.

Question 5.
Solve the following:
(i) \(\left|\begin{array}{ccc} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{array}\right|\) = 0
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 9
On expanding along R1 we get
(x + a + b + c)[ 0 - 0 - x {1.b - 1. (x + b)}] = 0
⇒ (x + a + b + c) [-x(b - x - b)] = 0
⇒ (x + a + b + c) (- x) (- x)= 0
⇒ (x + a + b + c) (x2) = 0
Either x2 = 0, then x = 0 (Impossible)
or x + a + b + c = 0
Thus, x = -(a + b + c)

(ii) \(\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|\) = 0
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 10
On expanding along Ry we get
(12 + x)[1{(- 2x) (- 2x) - 0} - 0 + 0] = 0
⇒ 4(12 + x)x2 = 0
Either 12 + x = 0
x = -12
or x2 = 0 ⇒ x = 0
Thus, x = 0, -12

Question 6.
If a, b and c are all non-zero and \(\left|\begin{array}{ccc} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{array}\right|\) = 0 then prove that \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) + 1 = 0.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 11
Expanding along Ry we get
a[b( 1 + c) + c] - 0 + 1 [be - 0] = 0
⇒ a(b + be + c) +1 (be) = 0
⇒ ab + abc + ca + be = 0
⇒ ab + bc + ca + abc = 0

Dividing both sides by abc, we get
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) + 1 = 0
Hence Proved.

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 7.
If \(\left|\begin{array}{ccc} a & b-y & c-z \\ a-x & b & c-y \\ a-x & b-y & c \end{array}\right|\) determinant find the value of \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\), where x, y, z ≠ 0
Answer:
Given, \(\left|\begin{array}{ccc} a & b-y & c-z \\ a-x & b & c-y \\ a-x & b-y & c \end{array}\right|\) = 0

Taking common x from C1, y from C2 and z from C3, we get
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 12

Taking (\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\) - 2) common from C1, we get
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 13
Since, xyz ≠ 0
Thus, \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\) = 2

Question 8.
Using Properties of determinants, prove that \(\left|\begin{array}{ccc} 1 & 1 & 1+3 x \\ 1+3 y & 1 & 1 \\ 1 & 1+3 z & 1 \end{array}\right|\) = 9(3xyz + xy + yz + zx)
Answer:
Let Δ = \(\left|\begin{array}{ccc} 1 & 1 & 1+3 x \\ 1+3 y & 1 & 1 \\ 1 & 1+3 z & 1 \end{array}\right|\)

On applying R2 → R2 - R3 and R3 → R3 - R1
Δ = \(\left|\begin{array}{ccc} 1 & 1 & 1+3 x \\ 3 y & -3 z & 0 \\ 0 & 3 z & -3 x \end{array}\right|\)

On applying along R1, we get
Δ = 9xy - 0] + (1 + 3x) (9yz - 0)
= 9zx + 9xy + 9yz + 27xyz = 9(3xyz + yz + zx + xy)
= 9(3xyz + yz + zx + xy)
= 9(3xyz + xy + yz + zx)
Hence proved

Question 9.
Using properties of determinants, prove that
\(\left|\begin{array}{lll} (b+c)^2 & a^2 & b c \\ (c+a)^2 & b^2 & c a \\ (a+b)^2 & c^2 & a b \end{array}\right|\)
= (a - b) (b - c) (c - a) (a + b + c) (a2 + b2 + c2)
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 14
Expanding along C1 we get
= (b - a) (c - a) (a2 + b2 + c2) [- b(b + a) + c(c + a)]
= (b - a) (c - a) (a2 + b2 + c2) [- b2 - ab + c2 + ac]
= (b - a) (c - a) (a2 + b2 + c2) [(c2 - b2) + (ca - ab)]
= (b - a) (c - a) (a2 + b2 + c2) [(c - b) (c + b) + a(c - b)]
= (b - a) (c - a) (a2 + b2 + c2) (c - b) (a + b + c)
= (a - b) (b - c) (c - a) (a + b + c) (a2 + b2 + c2) = RHS.
Hence proved

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 10.
If x, y, z are different and \(\left|\begin{array}{lll} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{array}\right|\) = 0, then using properties of determinants show that 1 + xyz = 0.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 15
On expanding along R1, we get
(1 + xyz).1[(y - x) (z + x) (z - x) - (y + x) (y - x) (z - x)] = 0
⇒ (1 + xyz) (y - x) (z - x) (z + x - y - x) = 0
⇒ (1 + xyz) (x - y) (y - z) (z - x) = 0
As, x, y, z are different, so x - y ≠ 0, y - z ≠ 0, z - x ≠ 0
Thus, 1 + xyz = 0

Question 11.
Using properties of determinants prove that \(\left|\begin{array}{lll} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{array}\right|\) = a3 + b3 + c3 - 3abc.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 16
Expanding along C3, we get
= (a + b + c) [(b - c) (a + b - 2c)] - (c - a) (c + a - 2b)
= (a + b + c) [ab + b2 - 2bc - ac - bc + 2c2 - c2 - ac + 2bc + ac + a2 - 2ab]
= (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
= a3 + b3 + c3 - 3abc
Hence proved

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 12.
If a, b, c are pth, qth and rth terms respectively of G.P, then prove that
\(\left|\begin{array}{lll} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{array}\right|\) = 0
Answer:
Let A be the first term and R be the common ratio of the G.P. Then, we have
a = ARp - 1
⇒ log a = log A + (p - 1) log R
b = ARq - 1
⇒ log b = log A + (q - 1) log R
c = ARr - 1
⇒ log c = log A + (r - 1) log R
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 17

Question 13.
Find the value of λ, so that the points (1, -5), (4, -5) and (λ, 7) are collinear.
Answer:
Given, the points (1, - 5), (4, 5) and (λ, 7) are collinear, then
\(\left|\begin{array}{ccc} 1 & -5 & 1 \\ -4 & 5 & 1 \\ \lambda & 7 & 1 \end{array}\right|\) = 0
On applying R2 → R2 - R1, and R3 → R3 - R1, we get
\(\left|\begin{array}{ccc} 1 & -5 & 1 \\ -5 & 10 & 0 \\ \lambda-1 & 12 & 0 \end{array}\right|\) = 0
Expanding along C3, we get
1[- 60 - 10(λ - 1)] = 0
⇒ - 60 - 10λ + 10 = 0
⇒ - 10λ = 50
Thus, λ = - 5

Question 14.
Using determinants, find the area of the triangle with vertices A (5, 4), B (-2, 4) and C (2, -6).
Answer:
The area of triangle is given by:
∆ = \(\frac{1}{2}\left|\begin{array}{ccc} 5 & 4 & 1 \\ -2 & 4 & 1 \\ 2 & -6 & 1 \end{array}\right|\)
Expanding along R1, we get
= \(\frac{1}{2}\) [5 (4 + 6) - 4 (2 - 2) + 1(12 - 8)]
= \(\frac{1}{2}\) [5 × 10 - 4(- 4) + 1 × 4]
= \(\frac{1}{2}\) [50 + 16 + 4]
= \(\frac{1}{2}\) × 70 = 35 sq. units

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 15.
Find the value of x if the area of ∆ is 35 square cm with vertices (x, 4), (2 - 6) and (5, 4).
Answer:
If vertices of a traingle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 18
Expanding along R1, we get
⇒ x(- 6 - 4) - 4(2 - 5) + 1(8 + 30) = ± 70
⇒ [- 10x + 12 + 38] = ± 70
⇒ - 10x + 50 = ± 70
Taking positive sign, we get
⇒ - 10x + 50 = 70
⇒ - 10x = 20 ⇒ x = - 2
Taking negative sign, we get
⇒ - 10x + 50 = - 70
⇒ - 10x = - 120 ⇒ x = 12
Thus, x = - 2, 12

Question 16.
Find the equation of the line joining A (1, 3) and B (0, 0) using determinants and find k if D (k, 0) is a point such that area of ∆ABD is 3 sq.units.
Answer:
Let P(x, y) be any point on line AB. Then,
Area of ∆ABP = 0
\(\frac{1}{2}\left|\begin{array}{lll} 1 & 3 & 1 \\ 0 & 0 & 1 \\ x & y & 1 \end{array}\right|\) = 0
\(\frac{1}{2}\)[1 (0 - y) - 3(0 - x) + 1(0 - 0)] = 0
⇒ 3x - y = 0
which is the required equation of AB.
Now, area ∆ABD = 3 sq. units
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 19
⇒ 1(0 - 0) - 3(0 - k) + 1(0 - 0) = ± 6
⇒ 3k = ± 6
Thus, k = ± 2

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 17.
If ∆ = \(\left|\begin{array}{lll} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 5 & 3 & 8 \end{array}\right|\), write the minor of element a22.
Answer:
Minor of element a22 = \(\left|\begin{array}{ll} 1 & 3 \\ 5 & 8 \end{array}\right|\) = 8 - 15 = - 7

Question 18.
Find the minor of the element of second row and third column (a23) in the following determinant
\(\left|\begin{array}{ccc} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{array}\right|\)
Answer:
Minor of a23 = \(\left|\begin{array}{cc} 2 & -3 \\ 1 & 5 \end{array}\right|\)
= 10 - (- 3) = 10 + 3 = 13

Question 3.
Find minors and cofactors of each element of determinant \(\left|\begin{array}{ccc} 3 & -3 & -4 \\ 1 & 2 & -2 \\ -1 & 2 & 1 \end{array}\right|\).
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 20
⇒ a11 = 3, a12 = - 3, a13 = - 4
a21 = 1, a22 = 2, a23 = - 2
a31 = - 1, a32 = 2, a33 = 1
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 21
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 22

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 19.
If A = \(\left|\begin{array}{ccc} 2 & 4 & 1 \\ 8 & 5 & 2 \\ -1 & 3 & 7 \end{array}\right|\), then find minors and co-factors of all elements of second row, also find det A.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 23
∴ A21 = - M21 = - 25, A22 = M22 = 15,
A23 = - M23 = - 10
Now, det A = 8.A21 + 5.A22 + 2.M23
= 8(- 25) + 5(15) + 2(- 10)
= - 200 + 75 - 20 = - 145

Question 20.
Write minors and co-factors of following determinants corresponding to first column, also find the value of determinants:
(i) \(\left|\begin{array}{ccc} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{array}\right|\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 24
= - 6 - (- 2) = - 6 + 2 = - 4
Cofactor of a31 is A31 = (- 1)34 M31
= 1 × (- 4) = - 4
So, determinant |A| = a11 A11 + a21A21 + a31A31
= 1. (- 12) + 4. (16) + 3. (- 4)
= 12 + 64 - 12 = 40

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

(ii)
\(\left|\begin{array}{lll} a & h & g \\ h & b & f \\ g & f & c \end{array}\right|\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 25
Cofactor of a31 is A31 = (- 1)4 M31 = (hf - bg) = hf - bg
So, determinant
|A| = a11A11 + a21A21 + a31A31
= a. (bc - f2) + h. (fg - hc) + g. (hc - bg)
= abc - af2 + fgh - h2c + fgh - bg2
= abc + 2fgh - af2 - bg2 - ch2

Question 21.
If ∆ = \(\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|\) and F11, F12, F13, ......... are the corresponding cofactors of a11, a12, a13 ...., then which of the following is true:
(a) a12F12 + a22F22 + a32F32 = 0
(b) a12F12 + a22F22 + a32F32 ≠ ∆
(c) a12F12 + a22F22 + a32F32 = ∆
(d) a12F12 + a22F22 + a32F32 = ∆
Answer:
(c) a12F12 + a22F22 + a32F32 = ∆
So, option (c) is correct.

Question 22.
Show that A = \(\left[\begin{array}{cc} 2 & -3 \\ 3 & 4 \end{array}\right]\) satisfies the equation x2 - 6x + 17 = 0. Hence, find A-1.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 26
Hence, the matrix A satisfies the equation x2 - 6x + 17
Now, A2 - 6A + 17I2 = 0
⇒ A2 - 6A = - 17I
⇒ A-1(A2 - 6A) = A-1(- 17I)
[Pre-multiplying both side by A-1]
A-1A2 - 6A-1A = - 17(A-1) = A - 6I = - 17A-1
A-1 = - \(\frac{1}{17}\)(A - 6I) = \(\frac{1}{17}\)(6I - A)
= \(\frac{1}{17}\left\{\left[\begin{array}{ll} 6 & 0 \\ 0 & 6 \end{array}\right]-\left[\begin{array}{cc} 2 & -3 \\ 3 & 4 \end{array}\right]\right\}=\frac{1}{17}\left[\begin{array}{cc} 4 & 3 \\ -3 & 2 \end{array}\right]\)

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 23.
Given, A = \(\left[\begin{array}{cc} 2 & -3 \\ -4 & 7 \end{array}\right]\), compute A-1 and show that 2A-1 = 9I - A.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 27

Question 24.
If A = \(\left[\begin{array}{cc} 3 & 2 \\ 4 & -2 \end{array}\right]\) find the value of λ, so that A2 = λA - 2I. Hence, find A-1.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 28
Equating the corresponding elements, we have
⇒ 2λ = 2 ⇒ λ = 1 .
Now, A2 = λA - 2I
A2A-1 = λA × A-1 - 2IA-1
A = λI - 2A-1
2A-1 = I - A
A-1 = \(\frac{1}{2}\)(I - A)
A-1 = \(\frac{1}{2}\left\{\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]-\left[\begin{array}{cc} 3 & 2 \\ 4 & -2 \end{array}\right]\right\}\)
Thus A-1 = \(\frac{1}{2}\left[\begin{array}{cc} -2 & -2 \\ -4 & 3 \end{array}\right]\)

Question 25.
If A-1 = \(\left[\begin{array}{ccc} 3 & 1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{ccc} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{array}\right]\) find (AB)-1.
Answer:
Given, B = \(\left[\begin{array}{ccc} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{array}\right]\)
|B| = 1(3 - 0) - 2(- 1 - 0) - 2(2 - 0)
= 3 + 2 - 4 = 5 - 4 = 1 ≠ 0
So, B-1 exists.
Cofactors of |B| are:
b11 = (- 1)1 + 1 (3 - 0) = 3
b12 = (- 1)1 + 2(- 1 - 0) = 1
b13 = (- 1)1 + 3 (2 - 0) = 2
b21 = (- 1)2 + 1 (2 - 4) = 2
b22 = ( 1)2 + 2 (1 - 0) = 1
b23 = (- 1)2 + 3(- 2 - 0) = 2
b31 = (- 1)3 + 1 (0 + 6) = 6
b32 = (- 1)3 + 2 (0 - 2) = 2
b33 = (- 1)3 + 3(3 + 2) = 5
Matrix formed by the cofactors of B is
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 29

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 26.
If A = \(\left[\begin{array}{ccc} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{array}\right]\), find (AT)-1.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 30
= 1 (- 1 - 8) - 0(- 2 - 6) - 2( - 8 + 3)
= - 9 + 10 = 1 ≠ 0
So, (AT)-1 exists.
Cofactors of |AT| are:
a11 = (- 1)1 + 1 (- 1 - 8) = - 9
a12 = (- 1)1 + 2(- 2 - 6) = 8
a13 = (- 1)1 + 3 (- 8 + 3) = - 5
a21 = (- 1)2 + 1 (0 + 8) = - 8
a22 = ( 1)2 + 2 (1 + 6) = 7
a23 = (- 1)2 + 3(4 - 0) = - 4
a31 = (- 1)3 + 1 (0 - 2) = - 2
a32 = (- 1)3 + 2 (2 - 4) = 2
a33 = (- 1)3 + 3(- 1 - 0) = - 1
Matrix formed by the cofactors of |AT| is:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 31

Question 27.
Find A-1, where A = \(\left[\begin{array}{ccc} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{array}\right]\). Hence, solve the system of equations, x + 2y - 3z = - 4, 2x + 3y + 2z = 2, and 3x - 3y - 4z = 11.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 32
The given system of equation is
x + 2y - 3z = - 4.
2x + 3y + 2z = - 2
3x - 3y - 4z = 11
We know that AX = B
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 33
Thus, x = 3, y = - 2 and z = 1 is the required solution.

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 28.
The sum of three numbers is 6. If we multiply the third number by 2 and add the first number to the result, we get 7. By adding second and third numbers to three times the first number, we get 12. Using matrices find the number.
Answer:
Let the three numbers be x, y and z respectively.
Then,
x + y + z = 6
x + 2z = 7
3x + y + z = 12
We obtain the following system of simultaneous linear equations:
x + y + z = 6
x + 0y + 2z = 7
3x + y + z = 12
The above system of equation can be written in matrix form as:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 34
= 1 (0 - 2) - (1 - 6) + 1 (1 - 0)
= - 2 + 5 + 1 = 4 ≠ 0
So, the above system of equations has a unique solutions given by X = A-1B
Cofactors of |A| are:
a11 = - 2, a12 = 5, a13 = 1, a21 = 0, a22 = - 2, a23 = 2, a31 = 2, a32 = - 1 and a33 = - 1.
Matrix formed by the cofactors of |A| is:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 35
x = 3, y = 1, z = 2
Hence, the numbers are 3, 1 and 2 respectively.

Question 29.
If A = \(\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]\) are square matrices. Find AB and hence solve the system of linear equations:
x - y = 3, 2x + 3y + 4z = 17, y + 2z = 17.
Answer:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 36
⇒ AB = 6I
Multiplying both sides by A-1, we get
⇒ A BA-1 = 6IA-1
⇒ BI = 6IA-1 [∵ AA-1 = I]
⇒ B = 6A-1
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 37

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 30.
A total amount of ₹ 7000 is deposited in three different saving bank accounts with annual interest rate 5%, 8% and 8\(\frac{1}{2}\) % respectively. The total annual interest from these three accounts is ₹ 550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
Answer:
Let the amount deposited in each three accounts be x, y, z respectively.
As per given data x + y + z = 7000 .................... (i)
Total annual interest is ₹ 550.
\(\frac{5}{100}\) x + \(\frac{8}{100}\) y +\( \frac{8.5}{100}\) z = 550
⇒ 5x + 8y + 8.5z = 55000 .................... (ii)
It is given that two amounts are equal.
Let x = y
∴ x - y = 0 .............. (iii)
From equations (i), (u) and (iii), we get
⇒ |A| = 1(0 + 8.5) - 1(0 - 8.5) + 1(- 5 - 8)
= 1 (8.5) - 1 (-8.5) + 1 (- 13)
= 8.5 + 8.5 - 13 = 4
Cofactors of |A| are:
C11 = (- 1)1 + 1 (0 + 8.5) = 8.5
C12 = (- 1)1 + 2(0 - 8.5) = 8.5
C13 = (- 1)1 + 3 (- 5 - 8) = - 13
C21 = (- 1)2 + 1 (0 + 1) = - 1
C22 = ( 1)2 + 2 (0 - 1) = - 1
C23 = (- 1)2 + 3(- 1 - 1) = 2
C31 = (- 1)3 + 1 (8.5 - 8) = 0.5
C32 = (- 1)3 + 2 (8.5 - 5) = - 3.5
C33 = (- 1)3 + 3(8 - 5) = 3
Matrix formed by the cofactors of |A| is:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 38
Equating the coefficients of both sides,
Thus, X = ₹ 1125, y = ₹ 1125, z = ₹ 4750

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 31.
A shopkeeper has 3 varieties of pens A, B and C. Meenu purchased 1 pen of each variety for a total of ₹ 21. Jeen purchased 4 pens of A variety, 3 pens of B variety and 2 pens of C variety for ₹ 60. While Shikha purchased 6 pens of A variety, 2 pens of B variety and 3 pens of C variety for ₹ 70. Using matrix method find the cost of each pen.
Answer:
From the given information we can form a matrix as follows:
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 39
From above we get three equations,
⇒ A + B + C = 21 .............. (i)
⇒ - B - 2C = - 24 ....... (ii)
⇒ 5C = 40
⇒ C = 8 ............. (iii)
Substituting C = 8 in Eq. (ii), we get
⇒ - B = - 2 × 8 = - 24
⇒ -B = - 24 + 16 ⇒ B = 8
Substituting values of B and C in Eq. (i), we get,
⇒ A + 8 + 8 = 21
⇒ A + 16 = 21
∴ A = 5
Thus, the cost of pen of variety A is ₹ 5, the cost of pen of variety B is ₹ 8 and the cost of pen of variety C is ₹ 8.

Question 32.
Solve the following system of equation by matrix methods:
x - y + 2z = 7
2x - y + 3z =12
3x + 2y - z = 5
Answer:
Writing given equation in matrix form
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 40
Here |A| = 1(1 - 6) + 1(- 2 - 9) + 2(4 + 3)
= - 5 - 11 + 14 = - 2 ≠ O
Now, the cofactors of |A| are:
a11 = (- 1)1 + 1 (1 - 6) = - 5
a12 = (- 1)1 + 2(- 2 - 9) = 11
a13 = (- 1)1 + 3 (4 + 3) = 7
a21 = (- 1)2 + 1 (1 - 4) = 3
a22 = ( 1)2 + 2 (- 1 - 6) = - 7
a23 = (- 1)2 + 3(2 + 3) = - 5
a31 = (- 1)3 + 1 (- 3 + 2) = - 1
a32 = (- 1)3 + 2 (3 - 4) = 1
a33 = (- 1)3 + 3(- 1 + 2) = 1
Matrix formed by the cofactors of |A| is
RBSE Class 12 Maths Important Questions Chapter 4 Determinants 41

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Multiple Choice Questions

Question 1.
If A is a square matrix of order 3, such that A(adj A) = 101, then |adj A| is equal to :
(a) 1
(b) 10
(c) 100
(d) 101
Answer:
(c) 100

Question 2.
If A is a 3 × 3 matrix such that |A| = 8, then |3A| equals:
(a) 8
(b) 24
(c) 72
(d) 216
Answer:
(d) 216

Question 3.
If \(\left|\begin{array}{lll} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{array}\right|\) + 3 = 0, then the value of x is:
(a) 3
(b) 0
(c) -1
(d) 1
Answer:
(c) -1

RBSE Class 12 Maths Important Questions Chapter 4 Determinants 

Question 4.
Let A = \(\left[\begin{array}{cc} 200 & 50 \\ 10 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{cc} 50 & 40 \\ 2 & 3 \end{array}\right]\), then |AB| is equal to:
(a) 460
(b) 2000
(c) 3000
(d) -7000
Answer:
(d) -7000

Question 5.
If A = \(\left[\begin{array}{lll} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right]\), then det(adj A) equals:
(a) a27
(b) a9
(c) a6
(d) a2
Answer:
(c) a6

Question 6.
If \(\left|\begin{array}{ccc} 3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8 \end{array}\right|\) = 0, then x = .........
(a) \(\frac{3}{2}, \frac{3}{11}\)
(b) \(\frac{3}{2}, \frac{11}{3}\)
(c) \(\frac{2}{3}, \frac{11}{3}\)
(d) \(\frac{2}{3}, \frac{3}{11}\)
Answer:
(c) \(\frac{2}{3}, \frac{11}{3}\)

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 7.
If \(\left|\begin{array}{ccc} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{array}\right|\) = k (abc)(a + b + c)3, then k = ............
(a) 1
(b) -1
(c) -2
(d) 2
Answer:
(d) 2

Question 8.
\(\left|\begin{array}{ccc} \sqrt{11}+\sqrt{3} & \sqrt{20} & \sqrt{5} \\ \sqrt{15}+\sqrt{22} & \sqrt{25} & \sqrt{10} \\ 3+\sqrt{55} & \sqrt{15} & \sqrt{25} \end{array}\right|\) = ..............
(a) 5(5√3 - 3√2)
(b) 5(5√2 + 5√3)
(c) -5(5√3 + 3√2)
(d) 5(5√2 - 5√3)
Answer:
(d) 5(5√2 - 5√3)

Question 9.
If 2s = a + b + c and A = \(\left[\begin{array}{ccc} a^2 & (s-a)^2 & (s-a)^2 \\ (s-b)^2 & b^2 & (s-b)^2 \\ (s-c)^2 & (s-c)^2 & \left(c^2\right) \end{array}\right]\) then det A = .................
(a) 2s2(s - a)(s - b)(s - c)
(b) 2s3(s - a)(s - b)(s - c)
(c) 2s(s - a)2(s - b)2(s - c)2
(d) 2s2(s - a)2(s - b)2(s - c)2
Answer:
(b) 2s3(s - a)(s - b)(s - c)

Question 10.
Let A = \(\left[\begin{array}{ccc} 4 & 4 k & k \\ 0 & k & 4 k \\ 0 & 0 & 4 \end{array}\right]\). If det(A2) = 16 then |k| is .........
(a) 1
(b) \(\frac{1}{4}\)
(c) 4
(d) 42
Answer:
(b) \(\frac{1}{4}\)

Question 11.
If \(\left|\begin{array}{ccc} x^2+x & x+1 & x-2 \\ 2 x^2+3 x-1 & 3 x & 2 x-3 \\ x^2+2 x+3 & 2 x-1 & 2 x-1 \end{array}\right|\) = 24x + B then B = ...........
(a) -12
(b) 12
(c) 24
(d) -8
Answer:
(a) -12

Question 12.
\(\left|\begin{array}{ccc} \tan ^2 x & -\sec ^2 x & 1 \\ -\sec ^2 x & \tan ^2 x & 1 \\ -10 & 12 & 2 \end{array}\right|\) = ..........
(a) 12 tan2x - 10 sec2x
(b) 12 sec2x - 10 tan2x + 2
(c) 0
(d) tan2x . sec2x
Answer:
(c) 0

Question 13.
\(\left|\begin{array}{ccc} 1 & a & a^2-b c \\ a & b & b^2-c a \\ 1 & c & c^2-a b \end{array}\right|\) = .............
(a) (a2 - bc)(b2 - ac)(c2 - ab)
(b) 5
(c) (a - b)(b - c)(c - a)
(d) -1
Answer:
(a) (a2 - bc)(b2 - ac)(c2 - ab)

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 14.
If the system of equations x + ay = 0, ax + y = 0, ax + z = 0 has infinite number of solutions then a =
(a) 0
(b) 1
(c) -1
(d) - 2
Answer:
(c) -1

Question 15.
The equations x + 2y + 3z = 1,2x + y + 3z = 2, 5x + 5y + 9z = 4 have
(a) no solution
(b) unique solution
(c) infinite solutions
(d) can not say anything
Answer:
(b) unique solution

Fill in the Blanks:

Question 1.
If A = \(\left[\begin{array}{cc} 0 & -1 \\ 0 & 2 \end{array}\right]\) and B = \(\left[\begin{array}{ll} 3 & 5 \\ 0 & 0 \end{array}\right]\), then |AB| = .................
Answer:
0

Question 2.
If \(\left|\begin{array}{cc} 3 x & 7 \\ -2 & 4 \end{array}\right|=\left|\begin{array}{ll} 8 & 7 \\ 6 & 4 \end{array}\right|\), then the value of x is ________________
Answer:
-2

Question 3,
The value of the determinant \(\left|\begin{array}{cc} p & p+1 \\ p-1 & p \end{array}\right|\) is ________________
Answer:
1

Question 4.
If Δ = \(\left|\begin{array}{lll} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 5 & 3 & 8 \end{array}\right|\), then the minor of element a22 is ________________
Answer:
-7

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 5.
For x = ________________, the matrix \(\left[\begin{array}{ll} 6-x & 4 \\ 3-x & 1 \end{array}\right]\) is a singular matrix.
Answer:
2

True/False

Question 1.
For matrix A, |A| is read as modulus of A.
Answer:
False

Question 2.
We must expand the determinant along that row or column which contains maximum number of zeros.
Answer:
True

Question 3.
The value of the determinant changed, if its rows and columns are interchanged.
Answer:
True

Question 4.
If any two rows (or columns) of a determinant are interchanged, then sign of determinant does not change.
Answer:
False

RBSE Class 12 Maths Important Questions Chapter 4 Determinants

Question 5.
If some or all elements of a row or column of a determinants are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.
Answer:
True

Prasanna
Last Updated on Nov. 13, 2023, 9:58 a.m.
Published Nov. 12, 2023