RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions Important Questions and Answers.

Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.

RBSE Class 12 Maths Chapter 2 Important Questions Inverse Trigonometric Functions

Question 1.
Find the principal value of each of the following:
(i) tan-1 √3 - sec-1 (- 2)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 1

(ii) cot-1 (- √3)
Answer:
Let cot-1 (- √3) = x ⇒ cot x = - √3
⇒ cot x = - cot \(\frac{\pi}{3}\) ⇒ cot x = cot (π - \(\frac{\pi}{3}\))
⇒ cot x = cot \(\frac{2 \pi}{3}\)
We know that the range of the principal value of cot-1 x is (0, π) and cot \(\left(\frac{2 \pi}{3}\right)\) = - √3
Thus, the principal value of cot-1 (- √3) is \(\frac{2 \pi}{3}\).

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

(iii) cosec-1 (- 2)
Answer:
Let cosec-1 (- 2) = x ⇒ cosec x = - 2
⇒ cosec x = - cosec \(\frac{\pi}{6}\)
⇒ cosec x = cosec \(\left(-\frac{\pi}{6}\right)\)
[∵ cosec (- θ) = - cosec θ]
We know that the range of the principal value of
cosec-1 x is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) - [0] and cosec \(\left(-\frac{\pi}{6}\right)\) = - 2.
Thus, the principal value of cosec-1 (- 2) is \(\frac{-\pi}{6}\).

(iv) cot [sin-1 {cos (tan-1 1)}]
Answer:
Given, cot [sin-1 {cos (tan-1 1)}]
= cot \(\left[\sin ^{-1}\left\{\cos \frac{\pi}{4}\right\}\right]\)
= cot \(\left[\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right]\)
= cot \(\frac{\pi}{4}\) = 1

(v) sec-1 \(\left(\frac{-2}{\sqrt{3}}\right)\).
Answer:
sec-1 = - \(\left(\frac{-2}{\sqrt{3}}\right)\) = an angle θ ∈ \(\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]\) such sec \(\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]\) = - \(\frac{2}{\sqrt{3}}\) ⇒ θ = \(\frac{5 \pi}{6}\)

Question 2.
Find the domain of sec-1 (3x - 1).
Answer:
We know that the range of sec x is (- ∞, - 1) ∪(1, ∞)
∴ 3x - 1 < - 1 and 3x - 1 ≥ 1
⇒ 3x < - 1 + 1 and 3x ≥ 1 + 1
⇒ 3x < 0 and x ≥ \(\frac{2}{3}\)
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 2

Question 3.
Prove the following results:
(i) tan-1 \(\frac{1}{4}\) + tan-1 \(\frac{2}{9}\) = \(\frac{1}{2}\) cos-1\(\frac{3}{5}\) = \(\frac{1}{2}\) sin-1 \(\frac{4}{5}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 3

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

(ii) tan-1\(\left(\frac{1}{7}\right)\) + 2 tan-1\(\left(\frac{1}{3}\right)\) = \(\frac{\pi}{4}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 4

(iii) 2 tan-1\(\frac{3}{4}\) - tan-1 \(\frac{17}{31}\) = \(\frac{\pi}{4}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 5

(iv) 2 tan-1 \(\frac{1}{2}\) + tan-1 \(\frac{1}{7}\) = tan-1 \(\frac{31}{17}\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 6

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 4.
Solve the following equations for x:
(i) tan-1 \(\left(\frac{2 x}{1-x^2}\right)\) + cot\(\left(\frac{1-x^2}{2 x}\right)\) = \(\frac{\pi}{3}\). x > 0
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 7

(ii) 2 tan-1 (sin x) = tan-1 (2 sec x), x ≠ \(\frac{\pi}{2}\).
Answer:
Given, 2 tan-1 (sin x) = tan-1 (2 sec x)
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 8
\(\frac{2 \sin x}{\cos ^2 x}\) = 2 sec x
\(\frac{2 \sin x}{\cos ^2 x}\) = 2 sec x
⇒ sin x = sec x. cos2 x
⇒ sin x = \(\frac{1}{\cos x}\) . cos2 x
⇒ sin x = cos x
⇒ tan x = 1 x = tan \(\frac{\pi}{4}\)
⇒ x = \(\frac{\pi}{4}\)
Thus, the required solution is x = \(\frac{\pi}{4}\).

(iii) tan-1\(\left(\frac{x-2}{x-1}\right)\) + tan-1\(\left(\frac{x+2}{x+1}\right)\) = \(\frac{\pi}{4}\).
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 9
⇒ 2x2 - 4 = 3
⇒ 2x2 - 4 - 3 = 0
⇒ 2x2 - 7 = 0
⇒ 2x2 = 7
⇒ x2 = \(\frac{7}{2}\)
⇒ x = ± \(\sqrt{\frac{7}{2}}\)
Thus, the required solution is x = ± \(\sqrt{\frac{7}{2}}\)

Question 5.
Prove that:
sin-1 (2x\(\sqrt{1-x^2}\)) = 2 cos-1 x, \(\frac{1}{\sqrt{2}}\) ≤ x ≤ 1.
Answer:
Let x = cos θ
θ = cos-1 x
L.H.S. = sin-1 (2x\(\sqrt{1-x^2}\))
= sin-1(2 cos θ\(\sqrt{1-\cos ^2 \theta}\))
= sin-1 (2 cos θ sin θ)
= sin-1 (sin 2θ)
= 2θ = 2 cos-1 x = R.H.S.
Hence Proved.

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 6.
Prove that: tan-1\(\frac{1}{4}\) + tan-1\(\frac{2}{9}\) = \(\frac{1}{2}\)sin-1\(\left(\frac{4}{5}\right)\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 10

Question 7.
If (tan-1 x)2 + (cot-1 x)2 = \(\frac{5 \pi^2}{8}\), then find x,
Answer:
(tan-1 x)2 + (cot-1 x)2 = \(\frac{5 \pi^2}{8}\)
⇒ (tan-1 x + cot-1 x)2 - 2 tan-1 x cot-1 x = \(\frac{5 \pi^2}{8}\)
⇒ 16(tan-1 x)2 - 8π(tan-1 x) - 3π2 = 0
(On solving by tan-1 x + cot-1 x = \(\frac{\pi}{2}\))
⇒ 16\(\left(\tan ^{-1} x-\frac{3 \pi}{4}\right) \left(\tan ^{-1} x+\frac{\pi}{4}\right)\) = 0
⇒ tan-1 x = - \(\frac{\pi}{4}\) ⇒ x = - 1 [∵ - \(\frac{\pi}{2}\) < tan-1 x < \(\frac{\pi}{2}\)]

Question 8.
Prove that:
\(\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}=\left(\frac{1}{3}\right)=\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\)
Answer:
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 11

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 9.
Find the value of sin-1 \(\left[\sin \left(-\frac{17 \pi}{8}\right)\right]\).
Answer:
We have,
RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 12

Multiple Choice Questions

Question 1.
The value of sin-1(cos\(\frac{3 \pi}{5}\)) is:
(a) \(\frac{\pi}{10}\)
(b) \(\frac{3 \pi}{5}\)
(c) -\(\frac{\pi}{10}\)
(d) -\(\frac{3 \pi}{5}\)
Answer:
(c) -\(\frac{\pi}{10}\)

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 2.
The value of tan[\(\frac{1}{2}\)cos-1\(\left(\frac{\sqrt{5}}{3}\right)\)] is:
(a) \(\frac{3+\sqrt{5}}{2}\)
(b) \(\frac{3-\sqrt{5}}{2}\)
(c) \(\frac{-3+\sqrt{5}}{2}\)
(d) \(\frac{-3-\sqrt{5}}{2}\)
Answer:
(b) \(\frac{3-\sqrt{5}}{2}\)

Question 3.
sin[2 cos-1\(\frac{3}{5}\)] =
(a) \(\frac{24}{25}\)
(b) \(\frac{2 \sqrt{6}}{5}\)
(c) \(\frac{4}{5}\)
(d) \(\frac{3}{10}\)
Answer:
(a) \(\frac{24}{25}\)

Question 4.
Cos-1(cos x) = x is satisfied by:
(a) x ∈ R
(b) x ∈ [0, π]
(c) x ∈ [-1, 1]
(d) x ∈ (0, π)
Answer:
(b) x ∈ [0, π]

Question 5.
If sin-1\(\frac{5}{x}\) + sin-1\(\frac{12}{x}=\frac{\pi}{x}\), then x =
(a) 10
(b) 12
(c) 13
(d) 14
Answer:
(c) 13

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions 

Question 6.
If sin-1x + sin-1b + sin-1c = π, then the value of a\(\sqrt{1-a^2}\) + b\(\sqrt{1-b^2}\) + c\(\sqrt{1-c^2}\) will be:
(a) 2abc
(b) a2 + b2 + c2
(c) ab + bc + ca
(d) 0
Answer:
(a) 2abc

Question 7.
If sin-1x + sin-1y + sin-1z = \(\frac{\pi}{2}\), then x2 + y2 + z2 + 2xyz is equal to:
(a) 0
(b) 1
(c) -1
(d) 2
Answer:
(b) 1

Question 8.
cos-1\(\frac{a b+1}{a-b}\) + cos-1\(\frac{b c+1}{b-c}\) + cot-1\(\frac{c a+1}{c-a}\) =
(a) 0
(b) 2
(c) π/4
(d) -1
Answer:
(a) 0

Question 9.
If a, b, c are positive real numbers and
θ = tan-1\(\sqrt{\frac{a(a+b+c)}{b c}}\) + tan-1\(\sqrt{\frac{b(a+b+c)}{c a}}\) + tan-1\(\sqrt{\frac{c(a+b+c)}{a b}}\), then tan θ =
(a) 0
(b) π/2
(c) π
(d) π/4
Answer:
(a) 0

Question 10.
The solution of sin-1\(\frac{2 a}{1+a^2}\) - cos-1\(\frac{1-b^2}{1+b^2}\) = tan-1\(\frac{2 x}{1-x^2}\) IS:
(a) \(\frac{a-b}{1-a b}\)
(b) \(\frac{1+a b}{a-b}\)
(c) \(\frac{a b-1}{a+b}\)
(d) \(\frac{a-b}{1+a b}\)
Answer:
(d) \(\frac{a-b}{1+a b}\)

Question 11.
If tan-1x + tan-1y + tan-1z = π, then x + y + z =
(a) xyz
(b) 0
(c) 3
(d) 2xyz
Answer:
(a) xyz

Question 12.
The value of cot-1\(\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right)\) is:
(a) π - x
(b) 2π - x
(c) \(\frac{x}{2}\)
(d) π - \(\frac{x}{2}\)
Answer:
(d) π - \(\frac{x}{2}\)

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 13.
sec2(tan-12) + cosec2(cot-13) =
(a) 5
(b) 10
(c) 15
(d) 20
Answer:
(c) 15

Question 14.
sin{cot-1(tan cos-1x)} =
(a) x
(b) \(\sqrt{1-x^2}\)
(c) 1/x
(d) -x
Answer:
(a) x

Question 15.
If sin-1 x + sin-1y = \(\frac{2 \pi}{3}\), then cos-1 x + cos-1y =
(a) 2π/3
(b) π/3
(c) π/6
(d) π
Answer:
(b) π/3

Fill in the Blanks

Question 1.
Sin-1 is a function whose domain is ____________
Answer:
[-1, 1]

Question 2.
The branch with range [0, π] is called the principal value branch of the function ____________
Answer:
cos-1

Question 3.
cosec-1 can be defined as a function whose domain is ____________
Answer:
R - (-1, 1)

Question 4.
The branch with range [0, π] - \(\left\{\frac{\pi}{2}\right\}\) is called the principal value branch of the function ____________
Answer:
sec-1

RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions

Question 5.
If sin(sin-1\(\frac{1}{5}\) + cos-1x) = 1, then the value of x is ____________
Answer:\(\frac{1}{5}\)

True/False

Question 1.
If tan-1x + tan-1y = \(\frac{\pi}{4}\); xy < 1, then the value of x + y + xy is 1.
Answer:
True

Question 2.
The value of tan (2tan-1\(\frac{1}{5}\)) is \(\frac{12}{5}\).
Answer:
False

Question 3.
The value of tan-1[2sin(2cos-1\(\frac{\sqrt{3}}{2}\))] is \(\frac{\pi}{3}\).
Answer:
True

Question 4.
Write the value of cos-1(\(\frac{1}{2}\)) - 2sin-1(-\(\frac{1}{2}\)) is \(\frac{2 \pi}{3}\).
Answer:
True

Question 5.
The value of tan-1(tan \(\frac{3 \pi}{3}\)) is\( \frac{\pi}{3}\).
Answer:
False

Prasanna
Last Updated on Nov. 13, 2023, 9:58 a.m.
Published Nov. 12, 2023