Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 2 Inverse Trigonometric Functions Important Questions and Answers.
Rajasthan Board RBSE Solutions for Class 12 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 12. Students can also read RBSE Class 12 Maths Important Questions for exam preparation. Students can also go through RBSE Class 12 Maths Notes to understand and remember the concepts easily.
Question 1.
Find the principal value of each of the following:
(i) tan-1 √3 - sec-1 (- 2)
Answer:
(ii) cot-1 (- √3)
Answer:
Let cot-1 (- √3) = x ⇒ cot x = - √3
⇒ cot x = - cot \(\frac{\pi}{3}\) ⇒ cot x = cot (π - \(\frac{\pi}{3}\))
⇒ cot x = cot \(\frac{2 \pi}{3}\)
We know that the range of the principal value of cot-1 x is (0, π) and cot \(\left(\frac{2 \pi}{3}\right)\) = - √3
Thus, the principal value of cot-1 (- √3) is \(\frac{2 \pi}{3}\).
(iii) cosec-1 (- 2)
Answer:
Let cosec-1 (- 2) = x ⇒ cosec x = - 2
⇒ cosec x = - cosec \(\frac{\pi}{6}\)
⇒ cosec x = cosec \(\left(-\frac{\pi}{6}\right)\)
[∵ cosec (- θ) = - cosec θ]
We know that the range of the principal value of
cosec-1 x is \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\) - [0] and cosec \(\left(-\frac{\pi}{6}\right)\) = - 2.
Thus, the principal value of cosec-1 (- 2) is \(\frac{-\pi}{6}\).
(iv) cot [sin-1 {cos (tan-1 1)}]
Answer:
Given, cot [sin-1 {cos (tan-1 1)}]
= cot \(\left[\sin ^{-1}\left\{\cos \frac{\pi}{4}\right\}\right]\)
= cot \(\left[\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right]\)
= cot \(\frac{\pi}{4}\) = 1
(v) sec-1 \(\left(\frac{-2}{\sqrt{3}}\right)\).
Answer:
sec-1 = - \(\left(\frac{-2}{\sqrt{3}}\right)\) = an angle θ ∈ \(\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]\) such sec \(\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]\) = - \(\frac{2}{\sqrt{3}}\) ⇒ θ = \(\frac{5 \pi}{6}\)
Question 2.
Find the domain of sec-1 (3x - 1).
Answer:
We know that the range of sec x is (- ∞, - 1) ∪(1, ∞)
∴ 3x - 1 < - 1 and 3x - 1 ≥ 1
⇒ 3x < - 1 + 1 and 3x ≥ 1 + 1
⇒ 3x < 0 and x ≥ \(\frac{2}{3}\)
Question 3.
Prove the following results:
(i) tan-1 \(\frac{1}{4}\) + tan-1 \(\frac{2}{9}\) = \(\frac{1}{2}\) cos-1\(\frac{3}{5}\) = \(\frac{1}{2}\) sin-1 \(\frac{4}{5}\)
Answer:
(ii) tan-1\(\left(\frac{1}{7}\right)\) + 2 tan-1\(\left(\frac{1}{3}\right)\) = \(\frac{\pi}{4}\)
Answer:
(iii) 2 tan-1\(\frac{3}{4}\) - tan-1 \(\frac{17}{31}\) = \(\frac{\pi}{4}\)
Answer:
(iv) 2 tan-1 \(\frac{1}{2}\) + tan-1 \(\frac{1}{7}\) = tan-1 \(\frac{31}{17}\)
Answer:
Question 4.
Solve the following equations for x:
(i) tan-1 \(\left(\frac{2 x}{1-x^2}\right)\) + cot\(\left(\frac{1-x^2}{2 x}\right)\) = \(\frac{\pi}{3}\). x > 0
Answer:
(ii) 2 tan-1 (sin x) = tan-1 (2 sec x), x ≠ \(\frac{\pi}{2}\).
Answer:
Given, 2 tan-1 (sin x) = tan-1 (2 sec x)
⇒ \(\frac{2 \sin x}{\cos ^2 x}\) = 2 sec x
⇒ \(\frac{2 \sin x}{\cos ^2 x}\) = 2 sec x
⇒ sin x = sec x. cos2 x
⇒ sin x = \(\frac{1}{\cos x}\) . cos2 x
⇒ sin x = cos x
⇒ tan x = 1 x = tan \(\frac{\pi}{4}\)
⇒ x = \(\frac{\pi}{4}\)
Thus, the required solution is x = \(\frac{\pi}{4}\).
(iii) tan-1\(\left(\frac{x-2}{x-1}\right)\) + tan-1\(\left(\frac{x+2}{x+1}\right)\) = \(\frac{\pi}{4}\).
Answer:
⇒ 2x2 - 4 = 3
⇒ 2x2 - 4 - 3 = 0
⇒ 2x2 - 7 = 0
⇒ 2x2 = 7
⇒ x2 = \(\frac{7}{2}\)
⇒ x = ± \(\sqrt{\frac{7}{2}}\)
Thus, the required solution is x = ± \(\sqrt{\frac{7}{2}}\)
Question 5.
Prove that:
sin-1 (2x\(\sqrt{1-x^2}\)) = 2 cos-1 x, \(\frac{1}{\sqrt{2}}\) ≤ x ≤ 1.
Answer:
Let x = cos θ
θ = cos-1 x
L.H.S. = sin-1 (2x\(\sqrt{1-x^2}\))
= sin-1(2 cos θ\(\sqrt{1-\cos ^2 \theta}\))
= sin-1 (2 cos θ sin θ)
= sin-1 (sin 2θ)
= 2θ = 2 cos-1 x = R.H.S.
Hence Proved.
Question 6.
Prove that: tan-1\(\frac{1}{4}\) + tan-1\(\frac{2}{9}\) = \(\frac{1}{2}\)sin-1\(\left(\frac{4}{5}\right)\)
Answer:
Question 7.
If (tan-1 x)2 + (cot-1 x)2 = \(\frac{5 \pi^2}{8}\), then find x,
Answer:
(tan-1 x)2 + (cot-1 x)2 = \(\frac{5 \pi^2}{8}\)
⇒ (tan-1 x + cot-1 x)2 - 2 tan-1 x cot-1 x = \(\frac{5 \pi^2}{8}\)
⇒ 16(tan-1 x)2 - 8π(tan-1 x) - 3π2 = 0
(On solving by tan-1 x + cot-1 x = \(\frac{\pi}{2}\))
⇒ 16\(\left(\tan ^{-1} x-\frac{3 \pi}{4}\right) \left(\tan ^{-1} x+\frac{\pi}{4}\right)\) = 0
⇒ tan-1 x = - \(\frac{\pi}{4}\) ⇒ x = - 1 [∵ - \(\frac{\pi}{2}\) < tan-1 x < \(\frac{\pi}{2}\)]
Question 8.
Prove that:
\(\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}=\left(\frac{1}{3}\right)=\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\)
Answer:
Question 9.
Find the value of sin-1 \(\left[\sin \left(-\frac{17 \pi}{8}\right)\right]\).
Answer:
We have,
Multiple Choice Questions
Question 1.
The value of sin-1(cos\(\frac{3 \pi}{5}\)) is:
(a) \(\frac{\pi}{10}\)
(b) \(\frac{3 \pi}{5}\)
(c) -\(\frac{\pi}{10}\)
(d) -\(\frac{3 \pi}{5}\)
Answer:
(c) -\(\frac{\pi}{10}\)
Question 2.
The value of tan[\(\frac{1}{2}\)cos-1\(\left(\frac{\sqrt{5}}{3}\right)\)] is:
(a) \(\frac{3+\sqrt{5}}{2}\)
(b) \(\frac{3-\sqrt{5}}{2}\)
(c) \(\frac{-3+\sqrt{5}}{2}\)
(d) \(\frac{-3-\sqrt{5}}{2}\)
Answer:
(b) \(\frac{3-\sqrt{5}}{2}\)
Question 3.
sin[2 cos-1\(\frac{3}{5}\)] =
(a) \(\frac{24}{25}\)
(b) \(\frac{2 \sqrt{6}}{5}\)
(c) \(\frac{4}{5}\)
(d) \(\frac{3}{10}\)
Answer:
(a) \(\frac{24}{25}\)
Question 4.
Cos-1(cos x) = x is satisfied by:
(a) x ∈ R
(b) x ∈ [0, π]
(c) x ∈ [-1, 1]
(d) x ∈ (0, π)
Answer:
(b) x ∈ [0, π]
Question 5.
If sin-1\(\frac{5}{x}\) + sin-1\(\frac{12}{x}=\frac{\pi}{x}\), then x =
(a) 10
(b) 12
(c) 13
(d) 14
Answer:
(c) 13
Question 6.
If sin-1x + sin-1b + sin-1c = π, then the value of a\(\sqrt{1-a^2}\) + b\(\sqrt{1-b^2}\) + c\(\sqrt{1-c^2}\) will be:
(a) 2abc
(b) a2 + b2 + c2
(c) ab + bc + ca
(d) 0
Answer:
(a) 2abc
Question 7.
If sin-1x + sin-1y + sin-1z = \(\frac{\pi}{2}\), then x2 + y2 + z2 + 2xyz is equal to:
(a) 0
(b) 1
(c) -1
(d) 2
Answer:
(b) 1
Question 8.
cos-1\(\frac{a b+1}{a-b}\) + cos-1\(\frac{b c+1}{b-c}\) + cot-1\(\frac{c a+1}{c-a}\) =
(a) 0
(b) 2
(c) π/4
(d) -1
Answer:
(a) 0
Question 9.
If a, b, c are positive real numbers and
θ = tan-1\(\sqrt{\frac{a(a+b+c)}{b c}}\) + tan-1\(\sqrt{\frac{b(a+b+c)}{c a}}\) + tan-1\(\sqrt{\frac{c(a+b+c)}{a b}}\), then tan θ =
(a) 0
(b) π/2
(c) π
(d) π/4
Answer:
(a) 0
Question 10.
The solution of sin-1\(\frac{2 a}{1+a^2}\) - cos-1\(\frac{1-b^2}{1+b^2}\) = tan-1\(\frac{2 x}{1-x^2}\) IS:
(a) \(\frac{a-b}{1-a b}\)
(b) \(\frac{1+a b}{a-b}\)
(c) \(\frac{a b-1}{a+b}\)
(d) \(\frac{a-b}{1+a b}\)
Answer:
(d) \(\frac{a-b}{1+a b}\)
Question 11.
If tan-1x + tan-1y + tan-1z = π, then x + y + z =
(a) xyz
(b) 0
(c) 3
(d) 2xyz
Answer:
(a) xyz
Question 12.
The value of cot-1\(\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right)\) is:
(a) π - x
(b) 2π - x
(c) \(\frac{x}{2}\)
(d) π - \(\frac{x}{2}\)
Answer:
(d) π - \(\frac{x}{2}\)
Question 13.
sec2(tan-12) + cosec2(cot-13) =
(a) 5
(b) 10
(c) 15
(d) 20
Answer:
(c) 15
Question 14.
sin{cot-1(tan cos-1x)} =
(a) x
(b) \(\sqrt{1-x^2}\)
(c) 1/x
(d) -x
Answer:
(a) x
Question 15.
If sin-1 x + sin-1y = \(\frac{2 \pi}{3}\), then cos-1 x + cos-1y =
(a) 2π/3
(b) π/3
(c) π/6
(d) π
Answer:
(b) π/3
Fill in the Blanks
Question 1.
Sin-1 is a function whose domain is ____________
Answer:
[-1, 1]
Question 2.
The branch with range [0, π] is called the principal value branch of the function ____________
Answer:
cos-1
Question 3.
cosec-1 can be defined as a function whose domain is ____________
Answer:
R - (-1, 1)
Question 4.
The branch with range [0, π] - \(\left\{\frac{\pi}{2}\right\}\) is called the principal value branch of the function ____________
Answer:
sec-1
Question 5.
If sin(sin-1\(\frac{1}{5}\) + cos-1x) = 1, then the value of x is ____________
Answer:\(\frac{1}{5}\)
True/False
Question 1.
If tan-1x + tan-1y = \(\frac{\pi}{4}\); xy < 1, then the value of x + y + xy is 1.
Answer:
True
Question 2.
The value of tan (2tan-1\(\frac{1}{5}\)) is \(\frac{12}{5}\).
Answer:
False
Question 3.
The value of tan-1[2sin(2cos-1\(\frac{\sqrt{3}}{2}\))] is \(\frac{\pi}{3}\).
Answer:
True
Question 4.
Write the value of cos-1(\(\frac{1}{2}\)) - 2sin-1(-\(\frac{1}{2}\)) is \(\frac{2 \pi}{3}\).
Answer:
True
Question 5.
The value of tan-1(tan \(\frac{3 \pi}{3}\)) is\( \frac{\pi}{3}\).
Answer:
False