Rajasthan Board RBSE Class 12 Maths Important Questions Chapter 10 Vector Algebra
Important Questions and Answers.
Question 1.
Represent graphically a displacement of 50 km, 45° west of south.
Answer:
In the figure below, the vector \(\overrightarrow{O P}\) represents the required displacement.
Question 2.
Classify the following measures as scalars and vectors,
(i) 10 seconds
Answer:
Time-scalar
(ii) 6000 cm3
Answer:
Volume-scalar
(iii) 8 Newton
Answer:
Force-vector
(iv) 22 km/h
Answer:
Speed-scalar
(v) 20 g/cm3
Answer:
Density-scalar
(vi) 40 m/s towards north
Answer:
Velocity-vector
Question 3.
In the given figure, which of the vectors are:
(i) equal
(ii) coinitial
(iii) collinear
Answer:
(i) Equal vectors: \(\vec{m}\) and \(\vec{n}\)
(ii) Coinitial vectors: \(\vec{p}, \vec{m}\) and \(\vec{r}\)
(iii) Collinear vectors: \(\vec{m}, \vec{n}\) and \(\vec{r}\)
Question 4.
If a unit vector \(\vec{a}\) makes angle \(\frac{\pi}{3}\) with î, \(\frac{\pi}{4} \)with ĵ and an acute angle θ with k̂ then find the value of θ.
Answer:
But θ is an acute angle, therefore cos θ = \(\frac{1}{2}\)
⇒ θ = \(\frac{\pi}{3}\)
Question 5.
For what values of \(\vec{a}\), vectors 2î - 3ĵ + 4k̂ and aî + 6ĵ - 8k̂ are collinear?
Answer:
Let \(\vec{a}\) = 2î - 3ĵ + 4k̂
and \(\vec{b}\) = aî + 6ĵ - 8k̂
Vectors \(\vec{a}\) and \(\vec{b}\) will be collinear, if
\(\vec{a}\) = k.\(\vec{b}\), where k is a scalar.
∴ 2î - 3ĵ + 4k̂ = k(aî + 6ĵ - 8k̂)
On comparing the coefficients of î and ĵ we get
2 = ka ........... (i)
and - 3 = 6k ⇒ k = \(\frac{1}{2}\)
From equation (i), we have
∴ 2 = - \(\frac{1}{2}\)a ⇒ a = - 4
Question 6.
Let \(\vec{a}\) = î + ĵ + k̂, \(\vec{b}\) = 4î - 2ĵ + 3k̂ and \(\vec{c}\) = î - 2ĵ + k̂. Find a vector of magnitude 6 units, which is parallel to the vector 2\(\vec{a} \)- \(\vec{b}\) + 3\(\vec{c}\).
Answer:
Given \(\vec{a}\) = î + ĵ + k̂, \(\vec{b}\) = 4î - 2ĵ + 3k̂ and \(\vec{c}\) = î - 2ĵ + k̂
∴ 2\(\vec{a}\) - \(\vec{b}\) + 3\(\vec{c}\)
= 2(î + ĵ + k̂) - (4î - 2ĵ + 3k̂) + 3(î - 2ĵ + k̂)
= 2î + 2ĵ + 2k̂ - 4î + 2ĵ - 3k̂ + 3î - 6ĵ + 3k̂
⇒ 2\(\vec{a}\) - \(\vec{b}\) + 3\(\vec{c}\) = î - 2ĵ + 2k̂
Now, a unit vector in the direction of vector
Question 7.
If \(\vec{a}\) and \(\vec{b}\) are perpendicular vectors, |\(\vec{a}+\vec{b}\)| = 13 and |\(\vec{a}\)| = 5, then find the value of |\(\vec{b}\)|
Answer:
Question 8.
If \(\vec{a}\) and \(\vec{b}\), are two unit vectors such that \(\vec{a}\) + \(\vec{b}\) is also a unit vector, then find the angle between \(\vec{a}\) and \(\vec{b}\).
Answer:
Given, |\(\vec{a}+\vec{b}\)| = 13, and |\(\vec{a}\)| = 5
Now, (\(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}\)) = \(\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)
⇒ \(|\vec{a}+\vec{b}|^2 \)= \(|\vec{a}|^2\) + 0 + 0 + \(|\vec{b}|^2\)
[∵ \(\vec{x} \cdot \vec{x}=|\vec{x}|^2, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=0 \text { as } \vec{a} \perp \vec{b}\)]
⇒ (13)2 = (5)2 + \(|\vec{b}|^2\)
⇒ 169 = 25 + \(|\vec{b}|^2\)
⇒ 169 - 25 = \(|\vec{b}|^2\)
⇒ 144 = \(|\vec{b}|^2\)
⇒ \(\vec{b}\) = 12
Question 9.
Let \(\vec{a}\) = î + 4ĵ + 2k̂, \(\vec{b}\) = 3î - 2ĵ + 7 and \(\vec{c}\) = 2î - ĵ + 4k̂. Find a vector \(\vec{p}\), which is perpendicular to both \(\vec{a}\) and \(\vec{b}\) and \(\vec{p} \cdot \vec{c}\) = 18.
Answer:
Given \(\vec{a}\) = î + 4ĵ + 2k̂,
\(\vec{b}\) = 3î - 2ĵ + 7
and \(\vec{c}\) = 2î - ĵ + 4k̂
Let \(\vec{p}\) = xî + yĵ + zk̂
We have, \(\vec{p}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\)
\(\vec{p} \cdot \vec{a}\) = 0
⇒ (xî + yĵ + zk̂).(î + 4ĵ + 2k̂) = 0
⇒ x + 4y + 2z = 0 .................. (i)
and \(\vec{p} \cdot \vec{b}\) = 0
⇒ (xî + yĵ + zk̂).(3î - 2ĵ + 7k̂) = 0
⇒ 3x - 2y + 7z = 0 .................. (ii)
Also, given \(\vec{p} \cdot \vec{c}\) = 18
⇒ (xî + yĵ + zk̂).(2î - ĵ + 4k̂) = 0
⇒ 2x - y + 4z = 18 .................. (iii)
On multiplying Eq. (i) by 3 and subtracting it from Eq. (ii), we get
- 14y + z = 0 ............ (iv)
Now, multiplying Eq. (i) by 2 and subtracting it from Eq. (iii), we get
- 9y - 18
⇒ y = - 2
On putting y = -2 in Eq. (iv), we get
- 14 (-2) + z = O
⇒ 28 + z = 0
z = - 28
On putting y = - 2 and z = - 28 in Eq. (i), we get
x + 4(- 2) + 2(- 28) = 0
⇒ x - 8 - 56 = 0
⇒ x = 64
Hence, the required vector is
\(\vec{p}\) = xî + yĵ + zk̂
i.e., \(\vec{p}\) = 64î - 2ĵ - 28k̂
Question 10.
Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, - 1, 4) and C(4, 5, - 1).
Answer:
We have, \(\vec{a}\) = î + 2ĵ + 3k̂, \(\vec{b}\) = 2î+ 4ĵ - 5k̂
So, the diagonals of the parallelogram whose adjacent sides are \(\vec{a}\) and \(\vec{b}\) are
\(\vec{p}\) = (î + 2ĵ + 3k̂) + (2î + 4ĵ - 5k̂)
= 3î + 6ĵ - 2k̂
and \(\vec{q}\) = (î + 2ĵ + 3k̂) - (2î + 4ĵ - 5k̂)
= - î - 2ĵ + 8k̂
Question 11.
Find the unit vector perpendicular to each of the vertors \(\vec{a}\) = 4î + 3ĵ + k̂ and \(\vec{b}\) = 2î - ĵ + 2k̂.
Answer:
Given vectors are \(\vec{a}\) = 4î + 3ĵ + k̂
and \(\vec{b}\) = 2î - ĵ + 2k̂
Now, perpendicular vector to the given vector is
\(\vec{a} \times \vec{b} = \left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & 1 \\ 2 & -1 & 2 \end{array}\right|\)
= î(6 + 1) - ĵ(8 - 2) + k̂(- 4 - 6)
= 7î - 6ĵ - 10k̂
|\(\vec{a} \times \vec{b}\)| = \(\sqrt{7^2+(-6)^2+(-10)^2}\)
= \(\sqrt{49+36+100}\) = √185
∴ Required unit vector = ± \(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\)
= ± \(\frac{(7 \hat{i}-6 \hat{j}-10 \hat{k})}{\sqrt{185}}\)
Question 12.
Find the unit vector perpendicular to the plane ABC where the position vectors of A, B and C are 2î - ĵ + k̂, î + ĵ + 2k̂ and 2î + 3ĵ respectively.
Answer:
Let O be the origin of reference.
Then, given \(\overrightarrow{O A}\) = 2î - ĵ + k̂,
\(\overrightarrow{O B}\) = î + ĵ + 2k̂
and \(\overrightarrow{O C}\) = 2î + 3k̂
Now, \(\overrightarrow{A B} = \overrightarrow{O B} - \overrightarrow{O A}\)
= î + ĵ + 2k̂ - 2î + ĵ - k̂
= - î + 2ĵ + k̂
and \(\overrightarrow{A C} = \overrightarrow{O C} - \overrightarrow{O A}\)
= 2î + 3k̂ - 2î + ĵ - k̂ = ĵ + 2k̂
Multiple Choice Questions
Question 1.
The figure formed by four points î + ĵ + k̂, 2î + 3ĵ, 3î + 5ĵ - 2k̂, k̂ - ĵ is a:
(a) square
(b) trapezium
(c) parallelogram
(d) rectangle
Answer:
(b) trapezium
Question 2.
If λ(3î + 2ĵ - 6k̂) is a unit vector, then the value of ?
(a) ± 7
(b) ± √43
(c) ± \(\frac{1}{\sqrt{43}}\)
(d) ± \(\frac{1}{7}\)
Answer:
(d) ± \(\frac{1}{7}\)
Question 3.
If \(\vec{a}\) = î - 2ĵ + 3k̂ and \(\vec{b}\) is a vector such that \(\vec{a} \cdot \vec{b}\) = \(|\vec{b}|^2\) and |\(\vec{a}-\vec{b}\)| = √7, then |\(\vec{b}\)| is equal to:
(a) 7
(b) 3
(c) √7
(d) √3
Answer:
(c) √7
Question 4.
Suppose \(\vec{a}\) = λî - 7ĵ + 3k̂, \(\vec{b}\) = λî + ĵ + 2λ k̂. If the angle between \(\vec{a}\) and \(\vec{b}\) is greater than 90°, then λ satisfies the inequality:
(a) λ > 1
(b) - 7 < λ < 1
(c) - 5 < λ < 1
(d) 1 < λ < 7
Answer:
(b) - 7 < λ < 1
Question 5.
The projection of \(\vec{a}\) = 3î - ĵ + 5k̂ on \(\vec{b}\) = 2î + 3ĵ + k̂ is:
(a) √14
(b) \(\frac{8}{\sqrt{14}}\)
(c) \(\frac{8}{\sqrt{39}}\)
(d) \(\frac{8}{\sqrt{35}}\)
Answer:
(b) \(\frac{8}{\sqrt{14}}\)
Question 6.
If \(\vec{a}\) and \(\vec{b}\) are two unit vectors inclined at an angle π/ 3, then the value of |\(\vec{a}+\vec{b}\)| is:
(a) greater than 1
(b) less than 1
(c) equal to 0
(d) equal to - 1
Answer:
(a) greater than 1
Question 7.
If \(\vec{a} \cdot \vec{b}\) = 0 and \(\vec{a}+\vec{b}\) makes an angle of 60° with a then:
(a) \(|\vec{a}|=\sqrt{3}|\vec{b}|\)
(b) \(|\vec{a}|=2|\vec{b}|\)
(c) 2\(|\vec{a}|=|\vec{b}|\)
(d) \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Answer:
(d) \(\sqrt{3}|\vec{a}|=|\vec{b}|\)
Question 8.
If \(\vec{a} \cdot \vec{b}\) = - \(|\vec{a} \| \vec{b}|\) then the angle between a and b is:
(a) 180°
(b) 60°
(c) 45°
(d) 90°
Answer:
(a) 180°
Question 9.
If \(\vec{x}\) and \(\vec{y}\) are unit vectors and \(\vec{x} \cdot \vec{y}\) = 0, then:
(a) \(|\vec{x}+\vec{y}|\) = √2
(b) \(|\vec{x}+\vec{y}|\) = 2
(c) \(|\vec{x}+\vec{y}|\) = 1
(d) \(|\vec{x}+\vec{y}|\) = √3
Answer:
(a) \(|\vec{x}+\vec{y}|\) = √2
Question 10.
If \(|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2\) = 144 and \(|\vec{a}|\) = 4 then \(\vec{b}\) is equal
(a) 8
(b) 3
(c) 16
(d) 12
Answer:
(b) 3
Question 11.
If a and b represent the adjacent sides of a parallelogram whose area is 5 units, then the area of the parallelogram whose adjacent sides are \(3\vec{a}+2 \vec{b}\) and \(\vec{a}+3 \vec{b}\) is:
(a) 75 units
(b) 165 units
(c) 45 units
(d) 105 units
Answer:
(d) 105 units
Question 12.
If |\(\vec{a}\)| = 1, |\(\vec{b}\)| = 4, \(\vec{a} \cdot \vec{b}\) = 2 and \(\vec{c}\) = 2 \(\vec{a} \times \vec{b}-3 \vec{b}\), then the angle between \(|\vec{b}|\) and \(|\vec{c}|\) is:
(a) \(\frac{\pi}{3}\)
(b) \(\frac{2 \pi}{3}\)
(c) \(\frac{5 \pi}{6}\)
(d) \(\frac{\pi}{6}\)
Answer:
(c) \(\frac{5 \pi}{6}\)
Fill in the Blanks
Question 1.
If \(\vec{a}\) is a non-zero vector, then \((\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}\) equals .....................
Answer:
0
Question 2.
The projection of the vector î - ĵ on the vector î + ĵ is ..................
Answer:
0
Question 3.
\(\vec{a}\) and - \(\vec{a}\) are ......................
Answer:
collinear
Question 4.
A line with two arrow heads is called a .................... line.
Answer:
directed
Question 5.
A directed line segment has ...................... as well as direction.
Answer:
magnitude
True/False
Question 1.
Resultant of two collinear vectors remains same ..........................
Answer:
False
Question 2.
A quantity bas magnitude as well as direction is called a vector ........................
Answer:
True
Question 3.
The point A from where the vector \(\overrightarrow{A B}\) starts is called its initial point .........................
Answer:
True
Question 4.
The point B where the vector \(\overrightarrow{A B}\) ends is called its terminal point ...............................
Answer:
True
Question 5.
The vector \(\overrightarrow{O P}\) having O and P as its terminal and initial points respectively, is called the position vector ........................
Answer:
False