Rajasthan Board RBSE Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 8 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 8. Students can also read RBSE Class 8 Maths Important Questions for exam preparation. Students can also go through RBSE Class 8 Maths Notes to understand and remember the concepts easily. Practicing the class 8 maths chapter 6 try these solutions will help students analyse their level of preparation.
Question 1.
Carry out the multiplication of the expressions in each of the following pairs : '
(i) 4p, q + r
Answer:
4p × (q + r) = 4p × q + 4p × r
= 4pq + 4pr
(ii) ab, a - b
Answer:
ab × (a - b) = ab × a - ab × b
= a2b - ab2
(iii) a + b, 7a2b2
Answer:
(a + b) × 7a2b2 = a × 7a2b2 + b × 7a2b2
= 7a3b2 + 7a2b3
(iv) a2 - 9, 4a
Answer:
(a2 - 9) × 4a = a2 × 4a - 9 × 4a
= 4a3 - 36a
(v) pq + qr + rp, 0
Answer:
(pq + qr + rp) × 0 = 0
Question 2.
Complete the table.
Answer:
Completed table is as under:
Question 3.
Find the product,
(i) (a2) × (2a22) × (4a26)
(ii) (\(\frac{2}{3}\)xy) × (\(\frac{-9}{10}\)x2y2)
(iii) (-\(\frac{10}{3}\)pq3) × (\(\frac{6}{5}\)P3q)
(iv) x × x2 × x3 × x4
Answer:
(i) (a2) × (2a22) × (4a26)
= (1 × 2 × 4) × (a2 × a22 × a26)
= 8a2 + 22 + 26
= 8a50
(ii) (\(\frac{2}{3}\)xy) × (\(\frac{-9}{10}\)x2y2)
= \(\left(\frac{2}{3} \times \frac{-9}{10}\right)\) × (x × x2 × y × y2)
= -\(\frac{3}{5}\) × x1+2 × y1+2
= -\(\frac{3}{5}\) × x3 × y3
(iii) \(\left(-\frac{10}{3} p q^{3}\right) \times\left(\frac{6}{5} p^{3} q\right)\)
= \(\left(-\frac{10}{3} \times \frac{6}{5}\right)\) × (p × p3 × q3 × q)
= - 4 × p1 + 3 × q3 + 1
= - 4p4q4
(iv) x × x2 × x3 × x4
= x1 + 2 + 3 + 4
= x10
Question 4.
(a) Simplify 3x (4x - 5) + 3 and find its values for (i) x = 3 (ii) x = \(\frac{1}{2}\).
(b) Simplify a (a2 + a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = - 1.
Answer:
(a) We have
3x (4x - 5) + 3 = 3x × 4x - 3x × 5 + 3
= 12x2 - 15x + 3
(i) If x = 3, then
3x(4x - 5) + 3 = 3 × 3(4 × 3 - 5) + 3
= 9(12 - 5) + 3 = 9 × 7 + 3
= 63 + 3
= 66
(ii) If x = \(\frac{1}{2}\), then
3x(4x - 5) + 3 = 3 × \(\frac{1}{2}\)(4 × \(\frac{1}{2}\) - 5) + 3
= \(\frac{3}{2}\)(2 - 5) + 3 = \(\frac{3}{2}\) × - 3 + 3
= \(\frac{-9+6}{2}\) = \(\frac{-3}{2}\)
(b) a(a2 + a + 1) + 5 = a3 + a2 + a + 5
(i) If a = 0, then
a(a2 + a + 1) + 5 = 0 (0 + 0 + 1) + 5 = 0 + 5 = 5
(ii) If a = 1, then
a(a2 + a + 1) + 5 = 1 (1 + 1 + 1) + 5 = 3 + 5 = 8
(iii) If a = - 1, then
a(a2 + a + 1) + 5 = - 1(1 - 1 + 1) + 5 = - 1 + 5 = 4
Question 5.
(a) Add :
p (p - q), q (q - r) and r (r - p)
Answer:
p (p - q) + q (q - r) + r (r - p)
= p × p - p × q + q × q - q × r + r × r - r × p
= p2 - pq + q2 - qr + r2 - pr
= p2 + q2 + r2 - pq - qr - pr
(b) Add : 2x (z - x - y) and 2y (z - y - x)
Answer:
2x (z - x - y) + 2y (z - y - x)
= 2xz - 2x2 - 2xy + 2yz - 2y2 - 2xy
= - 2x2 - 2y2 + 2xz + 2yz + (- 2 - 2) xy
= - 2x2 - 2y2 + 2xz + 2yz - 4xy
(c) Subtract : 3l (l - 4m + 5n) from 4l (10n - 3m + 2l)
Answer:
4l (10n - 3m + 2l) - 3l (l - 4m + 5n)
= 40ln - 12lm + 8l2 - 3l2 + 12lm - 15ln
= (40 - 15)ln + (- 12 + 12)lm + (8 - 3)l2
= 25ln + 5l2
(d) Subtract: 3a (a + b + c) - 2b (a - b + c) from 4c (- a + b + c)
Answer:
4c (- d + b + c) - [3a (a + b + c) - 2b (a - b + c)]
= 4c (- a + b + c) - 3d(d + b + c) + 2b(a - b + c)
= - 4ca + 4bc + 4c2 - 3a2 - 3ab - 3ca + 2 ab - 2 b2 + 2 bc
= - 3a2 - 2b2 + 4c2 + (- 3 + 2) db + (4 + 2)bc + (- 4 - 3)ca
= - 3a2 - 2b2 + 4c2 - ab + 6bc - 7ca