Rajasthan Board RBSE Solutions for Class 8 Maths Chapter 14 Factorization Ex 14.3 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 8 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 8. Students can also read RBSE Class 8 Maths Important Questions for exam preparation. Students can also go through RBSE Class 8 Maths Notes to understand and remember the concepts easily. Practicing the class 8 maths chapter 6 try these solutions will help students analyse their level of preparation.
Question 1.
Carry out the following divisions:
(i) 28x4 ÷ 56x
Answer:
28x4 ÷ 56x = 28×x×x×x×x28×2×x
= x×x×x2=x32
(ii) - 36y3 ÷ 9y2
Answer:
- 36y3 ÷ 9y2 = −1×4×9×y×y×y9×y×y
= −1×4×y1 = -4y
(iii) 66pq2r3 ÷ 11qr2
Answer:
= 6×11×p×q×q×r×r×r11×q×r×r
= 6×p×q×r1 = 6pqr
(iv) 34x3y3z3 ÷ 51xy2z3
Answer:
= 17×2×x×x×x×y×y×y×z×z×z17×3×x×y×y×z×z×z
= 2×x×x×y3=2x2y3
(v) 12a8b8 ÷ (- 6a6b4)
Answer:
Question 2.
Divide the given polynomial by the given monomial:
(i) (5x2 - 6x) ÷ 3x
Answer:
(5x2 - 6x) ÷ 3x = 5x2−6x3x=5x23x−6x3x
= 53x−2=13(5x−6)
(ii) (3y8 - 4y6 + 5y4) ÷ y4
Answer:
= 53 x - 2 = 13
= 3y8y4−4y6y4+5y4y4
= 3y4 - 4y2 + 5
(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2
Answer:
= 8(x3y2z2+x2y3z2+x2y2z3)4x2y2z2
= 8×x2y2z2×(x+y+z)4x2y2z2
= 2(x + y + z)
(iv) (x3 + 2x2 + 3x) ÷ 2x
Answer:
= x3+2x2+3x2x
= x×(x2+2x+3)2×x
= 12(x2 + 2x + 3)
(v) (p3q6 - p6q3) ÷ p3q3
Answer:
= p3q6−p6q3p3q3
= p3q3(q3−p3)p3q3
= q3 - p3
Question 3.
Workout the following divisions:
(i) (10x - 25) ÷ 5
Answer:
(10x - 25) ÷ 5 = 10x−255
= 5×(2x−5)5
= 2x - 5
(ii) (10x - 25) ÷ (2x - 5)
Answer:
(10x - 25) ÷ (2x - 5) = 5×(2x−5)(2x−5) = 5
(iii) 10y(6y + 21) ÷ 5(2y + 7)
Answer:
= 10y(6y+21)5(2y+7)
= 5×2×y×3×(2y+7)5×(2y+7)
= 2×y×31 = 6y
(iv) 9x2y2(3z - 24) ÷ 27xy(z - 8)
Answer:
= 9x2y2(3z−24)27xy(z−8)
= 9×x2y2×3×(z−8)9×3×xy×(z−8)
= xy1 = xy
(v) 9oabc(3a - 12)(5b - 30) ÷ 144(a - 4)(b - 6)
Answer:
= 96abc(3a−12)(5b−30)144(a−4)(b−6)
= 48×2×abc×3×(a−4)×5×(b−6)48×3×(a−4)×(b−6)
= 2×abc×51 = 10abc
Question 4.
Divide as directed:
(i) 5(2x + 1) (3x + 5) ÷ (2x + 1)
Answer:
5(2x + 1) (3x + 5) ÷ (2x + 1) = 5(2x+1)(3x+5)(2x+1)
= 5(3x+5)1
= 5(3x + 5)
(ii) 26xy(x + 5) (y - 4) ÷ 13x(y - 4)
Answer:
= 13×2×x×y×(x+5)×(y−4)13×x×(y−4)
= 2×y×(x+5)1
= 2y(x + 5)
(iii) 51pqr(p + q) (q + r) (r + p) ÷ 104pq (q + r) (r + p)
Answer:
= 52×p×q×r×(p+q)×(q+r)×(r+p)52×2×p×q×(q+r)×(r+p)
= 12r(p + q)
(iv) 20(y + 4) (y2 + 5y + 3) ÷ 5(y + 4)
Answer:
= 5×4×(y+4)×(y2+5y+3)5×(y+4)
= 4×(y2+5y+3)1
= 4(y2 +5y + 3)
(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)
Answer:
= x(x+1)(x+2)(x+3)x(x+1)
= (x+2)(x+3)1
= (x + 2)(x + 3)
Question 5.
Factorise the expressions and divide them as directed:
(i) (y2 + 7y + 10) ÷ (y + 5)
Answer:
We have,
(y2 + 7y + 10) = y2 + 2y + 5y + 10
= y(y + 2) + 5(y + 2)
= (y + 2) (y + 5) ...............(1)
(y2 + 7y + 10) ÷ (y + 5) = (y+2)(y+5)y+5 [Using (1)]
= y + 2
(ii) (m2 - 14m - 32) ÷ (m + 2)
Answer:
We have,
(m2 - 14m - 32) = m2 + 2m - 16m - 32
= m(m + 2) - 16(m + 2)
= (m + 2)(m - 16) ....(1)
(m2 - 14m - 32) ÷ (m + 2) = (m+2)(m−16)m+2 [Using (1)]
= m - 16
(iii) (5p2 - 25p + 20) ÷ (p - 1)
Answer:
We have,
5p2 - 25p + 20 = 5(p2 - 5p + 4)
= 5(p2 - p - 4p + 4)
= 5(p - 1) - 4(p- 1)]
= 5(p - 1)(p - 4) ................. (1)
(5p2 - 25p + 20) ÷ (p - 1)
= 5p2−25p+20p−1
= 5(p−1)(p−4)p−1
= 5(p - 4) [Using (1)]
= 5(p - 4)
(iv) 4yz(z2 + 6z - 16) ÷ 2y(z + 8)
Answer:
We have,
4yz(z2 + 6z - 16) = 4yz(z2 + 8z - 2z - 16)
= 4yz[z(z + 8) -2(z + 8)]
= 4yz(z.+8)(z - 2) ..........(1)
4yz(z2 + 6z - 16) ÷ 2y(z + 8)
= 4yz(z2+6z−16)2y(z+8)
= 4yz(z+8)(z−2)2y(z+8) [Using (1)]
= 2z(z−2)1 = 2z(z - 2)
(v) 5pq(p2 - q2) ÷ 2p(p + q)
Answer:
We have,
5pq(p2 - q2) = 5pq(p - q)(p + q)
5pq(p2 - q2) ÷ 2p(p + q) = 5pq(p2−q2)2p(p+q)
= 5×p×q×(p−q)×(p+q)2×p×(p+q) [Using (1)]
= 52q(p - q)
(vi) 12xy(9x2 - 16y2) ÷ 4xy(3x + 4y)
Answer:
We have,
9x2 - 16y2 = (3x)2 - (4y)2
= (3x + 4y)(3x - 4y) ................. (1)
12xy(9x2 - 16y2) ÷ 4xy(3x + 4y) = 12xy(3x+4y)(3x−4y)4xy(3x+4y) [Using (1)]
= 3(3x - 4y)
(vii) 39y3(50y2 - 98) ÷ 26y2(5y + 7)
Answer:
We have,
39y3(50y2 - 98) = 39y3 x 2 x (25y2 - 49)
= 78y3 x [(5y)23 - 72]
= 78y3 x (5y - 7)(5y + 1) .........(1)
∴ 39y3(50y2 - 98) ÷ 26y2(5y + 7)
= 78y3(5y−7)(5y+7)26y2(5y+7) [Using (1)]
= 3y(5y - 7)