Rajasthan Board RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3 Textbook Exercise Questions and Answers.
Rajasthan Board RBSE Solutions for Class 11 Maths in Hindi Medium & English Medium are part of RBSE Solutions for Class 11. Students can also read RBSE Class 11 Maths Important Questions for exam preparation. Students can also go through RBSE Class 11 Maths Notes to understand and remember the concepts easily.
Question 1.
Prove that:
sin2\(\frac{\pi}{6}\) + cos2\(\frac{\pi}{3}\) - tan2\(\frac{\pi}{4}\) = \(\frac{1}{2}\)
Answer:
L.H.S = sin2\(\frac{\pi}{6}\) + cos2\(\frac{\pi}{3}\) - tan2\(\frac{\pi}{4}\)
Hence Proved.
Question 2.
Prove that:
2sin2\(\frac{\pi}{6}\) + cosec2\(\frac{7 \pi}{6}\)cos2\(\frac{\pi}{3}\) = \(\frac{3}{2}\)
Answer:
L.H.S = 2sin2\(\frac{\pi}{6}\) + cosec2\(\frac{7 \pi}{6}\)cos2\(\frac{\pi}{3}\)
Question 3.
Prove that:
cot2\(\frac{\pi}{6}\) + cosec\(\frac{5 \pi}{6}\) + 3tan2\(\frac{\pi}{6}\) = 6
Answer:
L.H.S = cot2\(\frac{\pi}{6}\) + cosec\(\frac{5 \pi}{6}\) + 3tan2\(\frac{\pi}{6}\)
= (√3)2 + cosec(π - \(\frac{\pi}{6}\)) + 3 × \(\left(\frac{1}{\sqrt{3}}\right)^2\)
= 3 + (cosec \(\frac{\pi}{6}\)) + 3 × \(\frac{1}{3}\)
[ cosec(π - θ) = cosec θ]
= 3 + 2 + 1
= 6
= R.H.S
Hence Proved
Question 4.
Prove that:
2sin2\(\frac{3 \pi}{4}\) + 2 cos2\(\frac{\pi}{4}\) + 2sec2\(\frac{\pi}{3}\) = 10
Answer:
L.H.S = 2sin2\(\frac{3 \pi}{4}\) + 2 cos2\(\frac{\pi}{4}\) + 2sec2\(\frac{\pi}{3}\)
Question 5.
Find the value of:
(i) sin 75°
Answer:
sin 75° = sin(45° + 30°)
= sin 45° .cos 30° + cos 45° sin 30°
(∵ sin(A + B) = sin A cos B + cos A sin B)
(ii) tan 15°
Answer:
tan 15° = tan(45° - 30°)
[∵ 15° = 45° - 30°)
Question 6.
Prove the following:
cos(\(\frac{\pi}{4}\) - x)cos(\(\frac{\pi}{4}\) - y) - sin(\(\frac{\pi}{4}\) - x)sin(\(\frac{\pi}{4}\) - y) = sin(x + y)
Answer:
Question 7.
Prove the following
\(\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^2\)
Answer:
Question 8.
Prove the following:
\(\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}\) = cot2x
Answer:
L.H.S = \(\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}\)
= \(\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}\)
[Formula cos(π + θ) = -cos θ, cos(-θ) = cos θ and from sin(π - θ) = sin θ, cos(π + θ) = -sin θ]
Question 9.
Prove the following:
cos(\(\frac{3 \pi}{2}\) + x) cos(2π + x) × [cot (\(\frac{3 \pi}{2}\) - x) + cot(2π + x)] = 1
Answer:
L.H.S = cos(\(\frac{3 \pi}{2}\) + x) cos(2π + x) × [cot (\(\frac{3 \pi}{2}\) - x) + cot(2π + x)]
= sin x × cos x[tan x + cot x]
[∵ cos(\(\frac{3 \pi}{2}\) + x) = sin x, cos(2π + x) = cos x]
[∵ cot(\(\frac{3 \pi}{2}\) - x) = tan x, cot(2π + x) = cot x]
= sin x cos x\(\left[\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right]\)
= sin x cos x.\(\frac{\sin x}{\cos x}\) + sin x cos x \(\frac{\cos x}{\sin x}\)
= sin2x + cos2x [∵ sin2θ + cos2θ = 1]
= 1 = R.H.S
Hence Proved.
Question 10.
Prove the following :
sin (n + 1)x sin (n + 2)x + cos(n + 1)x cos(n + 2)x = cos x
Answer:
L.H.S. = sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x
= cos (n +1) x cos (n + 2)x + sin (n +1) x × sin (n + 2) x [By the formula cos(x - y) = cos x cos y + sin x sin y]
= cos [(n + 1)x - (n + 2) x]
= cos [nx + x - nx - 2x]
= cos (-x) = cos x = R.H.S.
Hence Proved
Question 11.
Prove the following:
cos(\(\frac{3 \pi}{4}\) + x) - cos(\(\frac{3 \pi}{4}\) - x) = -√2 sin x
Answer:
L.H.S = cos(\(\frac{3 \pi}{4}\) + x) - cos(\(\frac{3 \pi}{4}\) - x)
Hence Proved
Question 12.
Prove the following:
sin26x - sin24x = sin 2x sin 10x
Answer:
L.H.S = sin26x - sin24x
= \(\frac{1}{2}\)[2sin26x - 2sin24x]
[By multiplying and dividing by 2]
= \(\frac{1}{2}\)[(1 - cos 12x) - (1 - cos 8x)] [∵ 2sin2θ = 1 - cos 2θ]
= \(\frac{1}{2}\)[1 - cos12x - 1 + cos 8x]
= \(\frac{1}{2}\)[cos 8x - cos 12x]
= \(\frac{1}{2}\)[2 sin\(\frac{8 x+12 x}{2}\) sin\(\frac{12 x-8 x}{2}\)
[∵ cos x - cos y = 2 sin\(\frac{x+y}{2}\) sin\(\frac{y - x}{2}\)]
= \(\frac{1}{2}\) [2sin\(\frac{20x}{2}\).sin\(\frac{4x}{2}\)]
= sin 10x sin 2x
= sin 2x sin 10x = R.H.S
Hence Proved
Second Method or Alternative method:
L.H.S = cos22x - cos2 6x
= (cos 2x + cos 6x) (cos 2x - cos 6x)
By formula
[∵ a2 - b2 = (a + b)(a - b)]
= [2cos\(\frac{8 x}{2}\)cos\(\left(\frac{-4 x}{2}\right)\)].(2sin\(\frac{8 x}{2}\)sin\(\frac{4 x}{2}\))
[By formula cos x + cos y = 2 cos\(\frac{x+y}{2}\) cos\(\frac{x-y}{2}\)
and cos x - cos y = 2 sin \(\frac{x+y}{2}\) sin \(\frac{y-x}{2}\)]
= (2 cos 4x cos 2x) . (2 sin 4x sin 2x)
[∵ cos(-θ) = cos θ]
= (2 sin 4x cos 4x).(2 sin 2x cos 2x)
= sin 8x sin 4x [∵ sin 2θ = 2sin θ cos θ]
= sin 4x sin 8x = R.H.S
Hence Proved
Question 14.
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4 cos2x sin 4x
Answer:
L.H.S = sin 2x + 2sin 4x + sin 6x
= (sin 2x + sin 6x) + 2 sin 4x
= 2sin\(\frac{2 x+6 x}{2}\)cos\(\frac{2 x-6 x}{2}\) + 2 sin 4x
(By formula sin x + sin y = 2 sin\(\frac{x+y}{2}\)cos\(\frac{x-y}{2}\))
= 2 sin \(\frac{8x}{2}\)cos\(\left(\frac{-4 x}{2}\right)\) + 2sin 4x
= 2 sin 4x cos (- 2x) + 2 sin 4x
= 2 sin 4x [cos 2x +1 ] [∵ cos (-θ) = cos θ]
= 2 sin 4x (2 cos2x - 1 + 1)
(∵ cos 2θ = 2 cos2θ - 1)
= 2 sin 4x × 2 cos2 x
= 4 cos2 x sin 4x = R.H.S.
Hence Proved
Question 15.
Prove the following :
cot 4x (sin 5x + sin 3x) = cot x (sin 5x - sin 3x)
Answer:
L.H.S. = cot 4x (sin 5x + sin 3x)
= \(\frac{\cos x}{\sin x}\)[2 cos 4x siin x]
= 2cos 4x cos x ............(ii)
From (i) and (ii)
cot 4x(sin 5x + sin 3x) = cot x(sin 5x - sin 3x)
L.H.S = R.H.S
Hence Proved
Question 16.
Prove the following:
\(\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}\)
Answer:
Question 17.
Prove the following:
\(\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}\) = tan 4x
Answer:
Question 18.
Prove the following:
\(\frac{\sin x-\sin y}{\cos x+\cos y} \)= tan \(\frac{x-y}{2}\)
Answer:
Question 19.
Prove the following:
\(\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}\) = tan 2x
Answer:
Question 20.
Prove the following:
\(\frac{\sin x-\sin 3 x}{\sin ^2 x-\cos ^2 x}\) = 2 sin x
Answer:
Question 21.
Prove the following:
\(\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}\) = cot 3x
Answer:
Question 22.
Prove the following:
cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1
Answer:
cot 3x = cot(x + 2x)
cot 3x = \(\frac{\cot x \times \cot 2 x-1}{\cot 2 x+\cot x}\)
cot 3x (cot 2x + cot x) = cot x × cot 2x -1
(By cross-multiplication)
cot 3x cot 2x + cot 3x cot x = cot x × cot 2x - 1
1 = cot x × cot 2x - cot 2x cot 3x - cot 3x cot x
cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1
L.H.S. = R.H.S.
Hence Proved.
Question 23.
Prove the following:
tan 4x = \(\frac{4 \tan x\left(1-\tan ^2 x\right)}{1-6 \tan ^2 x+\tan ^4 x}\)
Answer:
L.H.S = tan 4x = tan2(2x)
Question 24.
Prove the following:
cos 4x = 1 - 8sin2 x cos2 x
Answer:
L.H.S = cos 4X = cos 2 (2x) [cos 2θ = 1 - 2 sin2 θ] = 1 - 2 sin2 2x
= 1 - 2(2 sin x cos x)2 [∵ sin 2x = 2 sin x cos x]
= 1 - 2 × 4 sin2x cos2x
= 1 - 8sin2x cos2x
= R.H.S
Hence proved
Question 25.
Prove the following:
cos 6x = 32cos6x - 48cos4x + 18cos2x - 1
Answer:
L.H.S = cos 6x
= cos3(2x) [∵ cos 3x = 4 cos3x - 3 cos x]
= 4cos3 2x - 3 cos 2x
= cos 2x (4cos22x - 3)
= cos2x [4 (cos 2x)2 - 3) [v cos 2A = 2cos2x - 1]
= cos 2x [4 (2 cos 2 x - 1)2 - 3] .
= cos 2x [4 (4 cos4 x + 1 - 4 cos2 x) -3]
= cos2x (16cos 4 x + 4 - 16cos2 x - 3)
= (2 cos2 x - 1) (16 cos4 x + 4 - 16 cos2 x - 3)
= 32cos6 x + 8cos2 x - 32cos4x - 6cos2 x - 16cos4x - 4 + 16cos2x + 3
= 32cos6x - 48 cos4 x +18 cos2 x - 1
= R.H.S.
Hence Proved.