Rajasthan Board RBSE Class 11 Maths Important Questions Chapter 13 Limits and Derivatives Questions and Answers.
Question 1.
If y = 1 + \(\frac{x}{1 !}+\frac{x^2}{2 !}+\frac{x^3}{3 !}\) + ....................... then prove that \(\frac{d y}{d x}\) = y.
Answer:
Question 2.
Find the derivative of the function ex log √x tan x.
Answer:
Question 3.
Find the derivative of function \(\frac{\cos x-x \sin x}{x \cos x+\sin x}\).
Answer:
Question 4.
If y = \(\sqrt{\frac{1-x}{1+x}}\) then prove that (1 - x2) \(\frac{d y}{d x}\) + y = 0.
Answer:
Question 5.
Evaluate the following:
(i) \(\lim _{x \rightarrow 0}\left(\frac{5^{3 x}-4^{2 x}}{x}\right)\)
Answer:
(ii) \(\lim _{x \rightarrow 0}\left(\frac{7^{2 x}-1}{5^{3 x}-1}\right)\)
Answer:
Question 6.
Evaluate:
\(\lim _{y \rightarrow 1} \frac{y^2-\sqrt{y}}{\sqrt{y}-1}\)
Answer:
Question 7.
Evaluate:
\(\lim _{x \rightarrow 5} \frac{5-\sqrt{20+x}}{3-\sqrt{14-x}}\)
Answer:
Question 8.
Evaluate:
\(\lim _{x \rightarrow 0} \frac{\left(\sqrt{1+x+x^2}-\sqrt{x+1}\right)}{2 x^2}\)
Answer:
Question 9.
Evaluate:
\(\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots \ldots+n}{n^2}\)
Answer:
Question 10.
Evaluate:
\(\lim _{n \rightarrow \infty} \frac{1^2+2^2+3^2+\ldots \ldots+n^2}{n^3}\)
Answer:
Question 11.
Evaluate:
\(\lim _{n \rightarrow \infty} \frac{1^3+2^3+3^3+\ldots \ldots+n^3}{n^4}\)
Answer:
Question 12.
Evaluate:
\(\lim _{x \rightarrow 0} \frac{\cos 4 x-\cos 8 x}{\cos 5 x-\cos 7 x}\)
Answer:
Question 13.
Evaluate:
\(\lim _{x \rightarrow 0} \frac{3 \sin x-\sin 3 x}{x^3}\)
Answer:
Multiple choice Questions
Question 1.
\(\lim _{x \rightarrow 3} \frac{\left[x^3-5 x^2+6 x\right]}{\left(x^2-9\right)}\) equals:
(a) \(\frac{1}{2}\)
(b) 2
(c) 1
(d) None of these
Answer:
(a) \(\frac{1}{2}\)
Question 2.
\(\lim _{x \rightarrow 0} \frac{(x+1)^5-1}{x}\) equals:
(a) 5
(b) \(\frac{1}{5}\)
(c) \(\frac{2}{5}\)
(d) None of these
Answer:
(a) 5
Question 3.
\(\lim _{z \rightarrow 0} \frac{z^{1 / 3}-1}{z^{1 / 6}-1}\) equals:
(a) 2
(b) 1
(c) - 2
(d) None of these
Answer:
(a) 2
Question 4.
\(\lim _{x \rightarrow 0}\) f(x) equals, where
(a) Not exist
(b) 1
(c) - 1
(d) None of these
Answer:
(b) 1
Question 5.
\(\lim _{x \rightarrow 0}\) f(x) equals, where
(a) 3
(b) - 3
(c) 2
(d) None of these
Answer:
(a) 3
Question 6.
\(\lim _{x \rightarrow 1}\) f(x) equals, where
(a) 6
(b) 1
(c) - 1
(d) None of these
Answer:
(a) 6
Question 7.
\(\lim _{x \rightarrow 5}\) f(x) where f(x) = |x| - 5:
(a) 0
(b) 1
(c) - 1
(d) None of these
Answer:
(a) 0
Question 8.
If
and \(\lim _{x \rightarrow 1}\) f(x) = f(1) then, value of a and b are:
(a) a = 0, b = 4
(b) a = 4, b = 0
(c) a = - 4, b = 1
(d) None of these
Answer:
(a) a = 0, b = 4
Question 9.
If
then \(\lim _{x \rightarrow 0}\) equals:
(a) Not exists
(b) 1
(c) 0
(d) None of these
Answer:
(a) Not exists
Question 10.
If
and \(\lim _{x \rightarrow 2}\) f(x) exists then value of k is:
(a) 5
(b) 3
(c) 4
(d) None of these
Answer:
(a) 5
Question 11.
\(\lim _{x \rightarrow 5^5}\) f(x) equals, where
(a) - 1
(b) 1
(c) 0
(d) None of these
Answer:
(a) - 1
Question 12.
\(\lim _{n \rightarrow \infty} \frac{1^2+2^2+3^2+\ldots+n^2}{n^2}\) equals:
(a) \(\frac{1}{3}\)
(b) 1
(c) \(\frac{1}{2}\)
(d) None of these
Answer:
(a) \(\frac{1}{3}\)
Question 13.
\(\lim _{n \rightarrow \infty} \frac{1^3+2^3+3^3+\ldots .+n^3}{n^4}\) equals:
(a) \(\frac{1}{4}\)
(b) \(\frac{1}{3}\)
(c) \(\frac{1}{2}\)
(d) None of these
Answer:
(a) \(\frac{1}{4}\)
Question 14.
\(\lim _{x \rightarrow 0} \frac{2^x-1}{(1+x)^{1 / 2}-1}\) equals:
(a) 2 log 2
(b) log 2
(c) 2
(d) None of these
Answer:
(a) 2 log 2
Question 15.
\(\lim _{x \rightarrow 1} \frac{x-1}{2 x^2-7 x+5}\) equals:
(a) \(\frac{1}{3}\)
(b) - \(\frac{1}{3}\)
(c) 3
(d) None of these
Answer:
(b) - \(\frac{1}{3}\)
Question 16.
\(\lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x+3}\) equals:
(a) \(\frac{1}{e}\)
(b) e
(c) e2
(d) None of these
Answer:
(b) e
Question 17.
\(\lim _{x \rightarrow 0} \frac{a x e^x-b \log (1+x)+c x e^{-x}}{x^2 \sin x}\) equals:
(a) 1
(b) 2
(c) - 1
(d) None of these
Answer:
(b) 2
Question 18.
\(\lim _{x \rightarrow 0} \frac{a x e^x-b \log (1+x)+c x e^{-x}}{x^2 \sin x}\) equals:
(a) - 1
(b) 2
(c) 1
(d) None of these
Answer:
(b) 2
Question 19.
\(\lim _{x \rightarrow 0} \frac{\pi / 2}{\cot \left(\frac{\pi}{2} x\right)}\) equals:
(a) π/2
(b) π2/2
(c) π/4
(d) None of these
Answer:
(b) π2/2
Question 20.
\(\lim _{x \rightarrow \pi / 2}\) tan2 x [(2 sin2x + 3 sin x + 4)1/2 - (sin2 x + 6 sin x + 2)] equals:
(a) 12
(b) \(\frac{1}{12}\)
(c) 1
(d) None of these
Answer:
(b) \(\frac{1}{12}\)
Fill in the Blanks
Question 1.
Velocity is the rate of change of ..................................
Answer:
displacement
Question 2.
If the right and left hand limits coincide, we call that common value as the .................................
Answer:
limit
Question 3.
If f (x) = 3x, then at x = 2, the derivative is .................................. .
Answer:
3
Question 4.
The derivative of sin x at x = 0 is .................................. .
Answer:
1
Question 5.
..................................... is the derivative of sin2 x.
Answer:
sin 2x
True/False
State whether the following statements are true or false:
Question 1.
If x → a, f(x) → 1, then limit of function f(x) is denoted as \(\lim _{x \rightarrow a}\) f (x) = 1.
Answer:
True
Question 2.
\(\lim _{x \rightarrow a}\) f (x) is the right hand limit of f at a.
Answer:
False
Question 3.
\(\lim _{x \rightarrow a}\) f (x) is the left hand limit of f at a.
Answer:
False
Question 4.
The limit of \(\lim _{x \rightarrow 1}\) (x3 - x2 + 1) is 1.
Answer:
True
Question 5.
The derivative of f (x) = a for a fixed real value a is 0.
Answer:
True